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Abstract

The thermodynamics and dynamics of a one-dimensional dimer-forming anharmonic model is studied in the classical limit.
This model mimics the behavior of materials with a Peierls instability. Specific heat C(T'), correlation length /.(T'), and order
parameter are calculated in three ways: (a) by mean-field (MF) approximation, (b) by numerical molecular dynamics (MD)
simulation, and (c¢) by an exact transfer matrix method. The neighbor distribution function F(x) and vibrational density-of-states
D(w) (Fourier transform of velocity—velocity correlation function) are found numerically. MF theory fails completely to
describe the destruction of long-range order by fluctuations, but nevertheless, the MF answers for C(T'), [.(T), F(x), and

D(w) give helpful interpretations of the exact behavior. © 2001 Published by Elsevier Science Ltd.
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1. Introduction

Polyacetylene [1,2] and blue bronze [3,4] are examples of
quasi-one-dimensional (1D) materials with Peierls-type
broken-symmetry ground states [5,6], driven by electron—
phonon interactions. In strictly 1D models, phonon fluctua-
tions destroy long-range order at temperature 7> 0. Mean
field (MF) theories that ignore these fluctuations are there-
fore unrealistic. Numerical studies of the Peierls problem
in 1D have produced results which converge towards
exact answers [7—11]. In 3D, the opposite situation holds.
Numerical studies are so far prohibitive, but fluctuations are
not very important except to renormalize the transition
temperature 7. downwards a little and to introduce a narrow
critical regime where MF exponent rules are violated. The
‘universality’ properties of the fluctuation-dominated region
attract a lot of attention but are quite unimportant from a
materials science point of view in 3D. MF theory provides a
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reasonably accurate and very helpful physical understanding
of actual 3D behavior.

MF studies of the Peierls problem have generally omitted
lattice dynamical aspects, focussing on electronic excita-
tions. The lattice is kept frozen at the position, which mini-
mizes electronic free energy. When too many electrons are
thermally excited above the Peierls gap, the gap collapses
and dimerization ends. Various authors [12—15] have
pointed out that both electronic and lattice (zero-point and
thermal) fluctuations should be taken into account. Even
with no electronic excitations, lattice kinetic energy at
higher T will excite atoms out of their dimer-forming Peierls
potential wells, ending the dimerized phase. Lattice fluctua-
tions also work as an effective disorder on the electronic
system, becoming stronger as T increases [16].

A full MF treatment of both lattice and electronic fluctua-
tions has not been presented to our knowledge, perhaps
because higher-dimensional models are difficult to address.
As a first step, the present paper analyses a classical 1D
model with only lattice-dynamical fluctuations. Exact
answers are found both by a transfer matrix (TM) method
and by classical molecular dynamics (MD). MF and exact
answers are carefully compared. It should be possible to
generalize our MD treatment to 3D classical systems with
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only lattice dynamics, and also to generalize the MF treat-
ment to 3D and to quantum systems with both lattice and
electron dynamics.

We take the following Hamiltonian

2
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The first two terms are a single-site (Einstein oscillator)
double-well potential with minima at *uy,where uy, =
JKi/K;. The next term is a first neighbor spring which
prefers displacements to alternate, xp = (— 1)‘Z uy. After
introducing dimensionless atom displacements ¥, = x,,/u,
time 7 = 1(x;/M)"?, and energy E = E/K]M%, only one free
parameter ¢ = k3/k; is left in the problem. This model was
frequently studied in the past [17-23]. These studies have
been reviewed by Dieterich [24]. McKenzie [25] considered
a continuous version of the model.

Here we solve this problem numerically by MD simula-
tion and compare with a MF approximation as well as an
exact TM method. The MD simulation enables us to
evaluate such properties as position distribution functions
and frequency spectra not available by the TM method; we
compare them with the MF results.

2. Mean-field solution

Using the Gibbs—Bogoliubov inequality [26,17,18], MF
theory can be formulated in a variational approach. It can be
implemented in all dimensions, using either classical or
quantum mechanics. A function @ is defined which bounds
the exact free energy function F(7') from above

F(T) = ;. T) = Fy + (H — Hy). )

Here H is a trial Hamiltonian which depends on a set of
adjustable parameters {«;} used to minimize the right hand
side of the expression (2). F is the free energy of the trial
Hamiltonian. The average ( ) is taken with respect to Hy. If
H, is harmonic, then minimization leads to temperature-
dependent frequencies of H,. This procedure is also
known as the ‘self-consistent phonon method.” We choose
the trial Hamiltonian

wve | ond 2, V2
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The values of {«;} = {w,, 6,u} which minimize Eq. (2)
depend on & = k3/k; and on the inverse temperature 3. All
quantities are dimensionless; yp is a displaced position
variable Xp + (— 1)2 u, and vy is the corresponding velocity.
If one raises 7, the dimerization amplitude u goes to zero at a
transition temperature 7.. The harmonic Hamiltonian H,
(Eq. (3)) describes traveling waves with frequency wi =
w(z)(l + 48 cosz(ka/Z)). We study here only the classical
limit for comparison with the MD simulation and the TM

solution. Let @y denote the minimum value of the trial free
energy @. From this we can compute the specific heat
Cyp = — T8> DypldT.

We define a displacement correlation function G as

Gmy = ~ > (=D xe (= 1) " xp ). )
N
£

The square of the order parameter is the correlation
function at large distance G(m — o). In MF approximation,
this order parameter is the variational parameter u. The
correlation length /., defined as decay rate of the correlation
function at large m, is given by

. 1+28 ++/1+48
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Using the phonon dispersion law of the trial Hamiltonian
(3) we define a density of phonon states Dyp(w) =
(a/27r) dk/dw, which is a function of temperature-dependent
parameters w, and 8.

Another quantity of interest is the function

1
F(x) = N(Z 8(x — xg + xe+1)>, (6)
£

which gives the distribution of the separation between
nearest atoms. At zero temperature, xp = u(—l)e, and the
distribution consists of a pair of delta functions F(x) =
(6(x — 2u) + 6(x + 2u))/2. At non-zero temperature it can
be evaluated in MF approximation

(8m) ex( —(x * 2u)’ ) o
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Fyp(x) =

3. Transfer matrix method

The TM method has been applied to 1D anharmonic
systems [19,22,23]. To evaluate the classical partition func-
tion, one first writes it as

N
zZ= l_[ szi exp(—Bf (zi+1>21), ®)
i=1

Where f(z,7) contains the part of the potential energy
associated with atom at 7', f(z,z') = ="+ Y4+ Ez -
Z)?2, and z; is (- l)iii and obeys periodic boundary condi-
tions zy+; = z1. We follow the standard procedure and
construct a complete orthonormal set of functions W¥,(z)
which satisfy the integral equation

szl exp(—Bf(z,2) ¥, (z') = exp(—Be,) ¥,,(2). ©)

Then the answer for the partition function in the thermo-
dynamic limit N— o is Z = exp(—N¢,), where €. is
the ‘ground state’ (exp(—pe€,) is the largest eigenvalue)
of the integral Eq. (9). The exact free energy is thus F(T) =
Ne,. The leading term of the displacement correlation
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function is [19]
Gm) = KW\ M W) exp(—ml), (10)

where the correlation length is, I, = 1/B8(e, — ¢,). Here
V'(and €}) are the first excited state of the integral Eq.
(9). By a variational method we found the two lowest
‘eigenenergies’ and the corresponding eigenfunctions to
accuracy 107'% and 1077, respectively. The specific heat is
found from the second derivative of the free energy €, with
respect to temperature. The first derivative is given to high
accuracy using the Feynman—Hellman theorem, and the
second derivative is found by finite differences.

4. Numerical simulation

We solved Newton’s equations for a ring of 250 atoms
governed by the Hamiltonian (1). A small time step df =
0.014 was used. Each simulation lasted for a time 70,000
(5% 10° dr). The position and velocity of each atom were
updated using the Verlet algorithm [27] with error propor-
tional to dr*. To control the temperature, the atoms suffered
random collisions with ‘gas molecules’ of equal mass. A
collision was modeled by exchanging an atom’s velocity
with a gas molecule’s velocity, which was randomly gener-
ated according to the Maxwell-Boltzmann distribution.
Collisions occurred randomly, but on average, once every
10 dr. The atom that suffered the collision was also chosen
randomly. Atoms were initially in the positions (xp =
(—l)euo), with random initial velocities chosen from a
Boltzmann distribution. The specific heat was calculated
using

(E*) —(E) .

C= 7

an

Each simulation was divided into four intervals of 17,500
time units (1,250,000 df). Over each of these four intervals,
the total energy E in the system was measured at 100,000
randomly chosen times. The specific heat was calculated for
each of the four intervals. The standard deviation of the four
calculations served as an error bar. The correlation function
G(m), for m = 0 to 30, was calculated at 400,000 randomly
chosen time intervals and then averaged. The value of
—In(G(m)) was graphed versus m. The range of m values
appropriate for linear fitting was chosen by eye. The slope of
the linear fit was taken as the reciprocal correlation length.

The frequency spectrum was similarly calculated from
the velocity correlation function

| &

X0 =+ > T + (D)), (12)

i=l

It was necessary to calculate y(#) from ¢ = 0 up to 3000 in
order for x(f) to approach zero. Each value of y(¢) was
calculated 1249 times and then averaged. At the end of
the simulation, the frequency spectrum was calculated by

Fourier transform

00

D(w) = J X(©) cos(wr) dt. (13)
0

The nearest neighbor distribution function (6) was found
by averaging histograms for the displacement distribution
over 1000 randomly chosen times.

5. Results and discussion

The exact solution has no ordered state at any 7> 0. MF
theory gives a critical temperature 7, at which the trial free
energies evaluated at # 7 0 and u = 0 coincide, indicating a
first order transition. The resulting order parameter u” versus
temperature is shown on the top graph of Fig. 1. The quali-
tative behavior is similar for all &, so we show results only
for £ =0.5.

The specific heat in MFA is shown on the bottom graph of
Fig. 1 along with TM and MD solutions. The numerical MD
and TM specific heats agree well. The uncertainty in the MD
specific heat arises from statistical error, which should
diminish as N~"2, when we take an average over a large
number N of time slices.

There is a big difference between exact and MF solutions
for the specific heat, except in the high and low T limits,
where they coincide. To understand why MF approximation
is accurate in the extreme 7 limits, consider the nearest
neighbor distribution function in the MF and MD cases
plotted on Fig. 2 for different values of 7. At low T atoms
are close to the bottom of the well xp = (— l)euo. In
this situation, approximating the actual Hamiltonian (1)
by the harmonic version (3) works well. In the opposite
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Fig. 1. Specific heat, inverse correlation length and order parameter
versus temperature for the case ¢ = k3/k; = 0.5. The solid lines are
exact solutions by the TM method; the long-dashed line is MF
approximation; diamonds are the MD results. The TM and MD
results agree.
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Fig. 2. Nearest neighbor distribution function from MF and MD
solutions for 7 = 0.08 (solid line), T = 0.16 (dashed line), T =
0.28 (dotted line), T = 0.8 (long-dashed line). The atomic displace-
ment is measured in units of (KI/KZ)I/Z.

limit of high 7, the harmonic approximation also works well
because the nearest-neighbor coupling term dominates the
total energy. Averages of the first and the second terms of
the MF Hamiltonian (3), namely wi(y,)*/2 and w38*(yp +
ye+1)*/2, coincide at 8 = 3/4, which happens at T = 0.74.
At T = 0.8, exact and MF results agree well for both the
specific heat and the nearest neighbor distribution function.
Fig. 2 shows that the maximum deviation in F(x) happens at
T = 0.28, just above T, = 0.26. The numerical result tells

50 [— T T
> 40 : = .'.',
) . :: . ::
$ 30r i EI‘ i b
© I afl s h
< 20 | Iy n\es N 1
L N\
=Z10F i IR 2 : ]
..... foesees 1 !
0.0 H. M A RS HN

—_
)]
T

o
o
—T

Numerical density
=

.......
oo BT =

0 | T S T |
00 05 10 15 20 25
Angular frequency ®

0

Fig. 3. Vibrational density of states versus frequency (in units of
(/M) from MF and MD calculations for T = 0.08 (solid line),
T = 0.16 (dashed line), 7' = 0.28 (dotted line), and 7 = 0.8 (long-
dashed line).

us that particles are mostly in the potential wells, while the
MF result has maximum probability when particles are in
undisplaced central sites.

Results for the MF, TM, and MD correlation lengths are
plotted on Fig. 1. The latter two coincide. The error bars of
the MD solution come from the least square fit of the
numerical correlation function. These error bars are smaller
than the size of the points and not shown on Fig. 1. The
correlation length diverges at 7 = 0 and fits the 1D Ising
solution A exp(B/T), where the coefficients (A,B) depend
on &, and approximately equal (0.18, 0.6) for &€= 0.5.
MF approximation gives /. smaller than the exact value
at all T and gives wrong behavior at 7 < T.. Above the
MF T, the predicted dl/dT is consistent with the exact
solution.

In MF approximation, the specific heat peaks at 7.. The
temperature 7,,,, of the specific heat maximum in the exact
solution is = 50% smaller than the MF value of T, but
tracks the MF transition point as the parameter £ is varied.

The vibrational density of states of the MD and MF calcu-
lations are shown on Fig. 3. In the low 7 limit the MFA and
MD solutions agree. When T is raised, the MF density of
states becomes broader and moves to lower frequency.
Since the trial Hamiltonian (3) does not have translational
symmetry, no acoustic modes occur; below a lower bound,
the spectrum has no states. According to MD, a non-zero
density of states appears at low frequency when 7 is com-
parable to the double well barrier Ty = 0.25. Particles with
kinetic energy slightly greater than 7§ take a very long time
to overcome the barrier, and contribute to the density of
states at arbitrarily low frequencies. When we raise T well
above T =0.25, this low frequency contribution
diminishes, and the spectrum becomes more similar to the
MF result.

6. Conclusions

An accurate description of the 1D chain obviously
requires improvements on MF theory. Topological defects
(phase slips) in the order parameter destroy long-range order
and perturb thermodynamic properties [22,23]. In 3D, the
topological defects are high-energy planar twin boundaries
that are less likely to play a major role. MF theories are
needed to understand materials properties, and are likely
to be quite accurate. The present study of dynamical
properties shows that, even in 1D, the MF picture gives
sensible insights into the position distributions and the
spectral properties even though oversimplifying the fluctua-
tions of the exact system.
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