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Franck-Condon–Broadened Angle-Resolved Photoemission Spectra Predicted in LaMnO3
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The sudden photohole of least energy created in the photoemission process is a vibrationally excited
state of a small polaron. Therefore the photoemission spectrum in LaMnO3 is predicted to have mul-
tiple Franck-Condon vibrational sidebands. This generates an intrinsic line broadening �0.5 eV. The
photoemission spectral function has two peaks whose central energies disperse with bandwidth �1.2 eV.
Signatures of these phenomena are predicted to appear in angle-resolved photoemission spectra.

PACS numbers: 75.30.Vn, 71.38.+i, 79.60.Bm
The colossal magnetoresistance effect [1] in doped man-
ganese oxides has attracted a lot of attention. The interplay
of charge, orbital, and magnetic orders results in a very rich
phase diagram [2]. The parent compound LaMnO3 has or-
thorhombic symmetry at low temperature. The Mn13 ion
has d4 (t3

2g, e1
g) configuration with an “inert” t2g core (spin

3�2) and a half-filled doubly degenerate eg-type d orbital
which is Jahn-Teller (JT) unstable. Ignoring rotation of the
MnO6 octahedra, which occurs below 1010 K, the JT sym-
metry breaking is cubic to tetragonal [3] at TJT � 750 K.
The corresponding orbital order [4] has x- and y-oriented
Eg orbitals alternating in the x-y plane with wave vector
�Q � �p, p , 0�. This in turn causes layered antiferromag-
netic (AFA) order to set in at TN � 140 K.

The electronic structure of LaMnO3 has been studied,
for example, by photoemission [5,6] and by first principles
calculations [7]. Still there is controversy about the nature
of the low energy excitations, arising from the interplay
between strong on-site Coulomb repulsion (which leads to
magnetic order) and strong electron-phonon (e-p) interac-
tions [8] (which lead to orbital order).

When an electron is removed from the JT-ordered
ground state, e-p coupling causes the hole to self-localize
in an “anti-JT” small polaron state. In a previous paper
[9] we have described the localized polaron in adiabatic
approximation. Residual nonadiabatic coupling allows
the hole to disperse with a bandwidth narrowed by the
Huang-Rhys factor e23D�4 h̄v � 1024. The photoemission
process is sudden. The emitted electron with wave vector
�k leaves a hole in a lattice “frozen” in the unrelaxed
JT state. Ignoring lattice relaxation, this hole would
disperse with bandwidth 2t � 1 eV (t is the hopping
parameter), as shown in Fig. 1. However, this is not a
stationary state and must be regarded as a superposition
of exponentially narrowed small polaron bands. Such
bands have anti-JT oxygen distortions at each site, but a
sufficient number of vibrational quanta are also excited
such that the anti-JT distortion at time zero is “undone.”
This is the “Franck-Condon principle.”

The measured spectrum at wave vector �k will consist
of a central d function at the energy of the frozen lattice
(dispersive) band ´1,2� �k�, plus multiple vibrational side-
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bands at energy ´1,2� �k� 6 nh̄v, with an overall Gaussian
envelope whose width is approximately the polaron bind-
ing energy. Franck-Condon broadening has been seen in
photoemission spectra of solid nitrogen and oxygen [10].

We find at each wave vector �k the photoemission spec-
trum has an intrinsic Franck-Condon broadening indicated
by error bars in Fig. 1. The position of the maximum dis-
perses with the �k vector close to the frozen lattice spec-
trum. A qualitative picture of this process has been given
by Sawatzky [11] in the context of high temperature super-
conductors and by Dessau and Shen [6] for the mangan-
ites. The present paper gives an exact algebraic prediction
for the angle-resolved photoemission spectra (ARPES) of
a model Hamiltonian for LaMnO3.

Our model Hamiltonian [9], first introduced by Millis
[12], has hopping Hel, electron phonon Hep, and lattice
HL energies,
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FIG. 1. Peak positions of the ARPES (a) at T � 0 K and
(b) at T � 300 K along high-symmetry lines of the tetrago-
nal Brillouin zone are shown by solid lines. Spin disorder at T
above the Néel temperature TN effectively reduces the hopping
parameter t � �dds� by 2�3 and adds hopping in the ẑ direc-
tion which strongly affects dispersion. Error bars (FWHM of
the photoemission peak) represent Franck-Condon broadening.
Band structure (U � 0 limit) peak positions l1,2� �k� are shown
by dashed lines.
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Hel � t
X
�,6

��cyx ���cx�� 6 x̂�� 1 �x ! y� 1 � y ! z�� ,

Hep � 2g
X
�,a

n̂�,a�u�,a 2 u�,2a� , (1)

HL �
X
�,a

�P2
�,a�2M 1 Ku2

�,a�2� .

In these formulas cya��� creates a state with orbital
ca � j3a2 2 r2	, where a � x, y, z. These three
orbitals span the two dimensional eg subspace and can
be expressed in terms of the conventional orthogonal
basis C2 � dx22y2 , C3 � d3z22r2 � Cz ; specifically
Cx,y � 6

p
3�2C2 2 C3�2. The resulting Hel coincides

with the nearest-neighbor two-center Slater-Koster [13]
hopping Hamiltonian with overlap integral t � �dds� and
�ddd� � 0. The hopping parameter t � 0.5 eV is chosen
to agree with an ab initio eg bandwidth of 1 eV [7].
The e-p interaction Hep is modeled by a linear energy
reduction of an occupied cx orbital [n̂�,x � cyx ���cx���] if
the corresponding two oxygens in the 6x̂ direction expand
outwards, and similarly for ŷ and ẑ oxygens if cy or cz

orbitals are occupied. The strength of the e-p coupling g
determines the JT splitting 2D � 1.9 eV, which is fitted
to agree with the lowest optical conductivity peak [14,15].
Static oxygen distortions 2u �

p
2D�Mv2 � 0.296 Å

given by our model agree well with neutron diffraction
data 0.271 Å [3]. For the lattice term HL we use a sim-
plified model where oxygen vibrations along Mn-O-Mn
bonds are local Einstein oscillators. The displacement
u�,a is measured from a cubic perovskite position of the
nearest oxygen in the â direction to the Mn atom at �. The
oxygen vibrational energy h̄v � h̄

p
K�M � 0.075 eV is

taken from Raman data [16]. In addition there is a large
on-site Coulomb repulsion U and a large Hund energy.
These terms inhibit hopping except to empty sites where
the t2g core spins are aligned correctly.

In adiabatic approximation one can solve this problem
for U � 0 or U � `. Both cases give a good description
of the observed cooperative JT order. When U � 0, the
ground state wave function is

jGS, 0	 �
Y

�k

c
y
�k1

c
y
�k2
jvac	 . (2)

A JT gap �2D opens and the lower two bands of energy
l �k1, l �k2 are filled. The photohole as initially created has
energy,

l2
1,2 � D2 1 t2�2C2

x 1 CxCy 1 2C2
y � 6 tjCx 1 Cyj

3
q

D2 1 4t2�C2
x 2 CxCy 1 C2

y� , (3)

where Cx,y � coskx,y and Cz not entering at T � 0 K.
These bands are shown in Fig. 1(a) as dashed lines.

At this point, at least in principle, one could proceed nu-
merically to find the polaronic energy lowering. However,
it is both easier and more realistic to switch to U � `.
The ground state wave function,

jGS, `	 �
AY
�

c
y
X���

BY
�0

c
y
Y ��0� jvac	 , (4)

has orbitals CX,Y � 2�C3 7 C2��
p

2 occupied singly on
interpenetrating A and B sublattices. This is a fully cor-
related state with zero double occupancy, while Eq. (2) is
a band wave function in which two electrons are found
on the same Mn atom with nonzero probability. For U $

6t � 3 eV, state (4) has lower energy than state (2) [9].
Neglecting creation of orbital defects with energy �2D

the frozen lattice approximation predicts photohole ener-
gies D 1 ´1,2� �k�, where ´1,2� �k� � 6�t�2� �Cx 1 Cy�. We
need to add a nonadiabatic treatment of the e-p coupling.
The effective Hamiltonian Heff � Hel 1 Hep 1 HL
for the single hole is
H A
el �

X
�[A

t
4

�dy
Y �� 6 x�dX��� 1 d

y
Y �� 6 y�dX���� ,

H A
ep 1 H A

L �
X
�[A

d
y
X���dX���

Ω
D 1

X
a

ka�aa��� 1 ay
a��� 2 ba�� 2 a� 2 by

a�� 2 a��
æ

1
X
a

ay
a���aa��� .

(5)
Here the operator d
y
X��� � cX��� creates a hole in the JT

ground state by destroying an electron on orbital X at site
� (if � [ A sublattice), and the operator d

y
Y ��� � cY ���

creates a hole on B sublattice (if � [ B). The phonon op-
erators ay

a��� or by
a��� create vibrational quanta on the � 1

â�2 oxygen, if � [ A or � [ B, respectively. The e-p
coupling constants are kx,y,z �

p
D�12 �1 1

p
3�2; 1 2p

3�2; 1�. The Hamiltonian and all other energy param-
eters D and t in Eq. (5) are in units of h̄v. The total
Hamiltonian has an additional term H

B
el 1 H B

ep 1 H
B

L

which is obtained from Eq. (5) by interchanging operators,

dY $ dX , ax $ by , ay $ bx , az $ bz ,
(6)

and summing over the B sublattice.
Following Cho and Toyozawa [17] we are able to di-

agonalize Hamiltonian (5) in a very large truncated basis
of functions with a hole present on site � and an arbitrary
number of vibrational quanta p6x , p6y , p6z on the six dis-
placed neighboring oxygens,
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jCA��, �p��	 � d
y
X���

Y
a

U
aa

� �2ka�
�ay

a����p1a

p
p1a!

3 U
ba

�2a�ka�
�by

a�� 2 a��p2a

p
p2a!

jGS, `	 .

(7)

The displacement operator Ua
� �k� � exp�2k�a� 2 a

y
� ��

makes the Hep 1 HL part of the Hamiltonian diagonal.
To get basis functions jCB��, �p��	 for holes on the B sub-
lattice, the operators in Eq. (7) should be interchanged ac-
5180
cording to Eq. (6). The next step is to build Bloch wave
functions by Fourier transformation of the basis functions
Eq. (7). Then the Hamiltonian (5) will be diagonal with
respect to the �k vector. The hopping term of the Ham-
iltonian Hel couples the jCA��, �p��	 and jCB��0, �p��	
wave functions on the neighboring sites. The vibrational
wave functions give a product of Huang-Rhys factors, but
a shared oxygen contributes a nonfactorizable overlap in-
tegral. However if one treats this shared oxygen as two
independent atoms, one coupled to each site, then the
Hamiltonian has a simple form,
H AA
pp0 � �k� � H BB

pp0 � �k� � d�p� �p0�

∑
D

4
1

X
a

�p1a 1 p2a�
∏

,

H AB
pp0 � �k� � H BA

pp0 � �k� � ´� �k�
Y
a

�21�p2a1p0
2a �P�p1a , ka�P�p2a , ka�P�p0

1a , ka�P�p0
2a , ka��1�2, (8)

where P�p, k� � exp�2k2�k2p�p! is a Poisson distribution. Since off-diagonal terms factorize, the analytical solution
is available in this approximation,

C
1,2
l � �k� �

X̀
�p��0

Y
a

�21�p2a �P�p1a , ka�P�p2a , ka��1�2
C

A
�k

��p�� 6 C
B
�k

��p��p
2G0�xl� �

P
a0�p1a0 1 p2a0� 2 xl�

. (9)
The corresponding eigenvalues are

E
1,2
l � �k� �

D

4
1 x

1,2
l � �k�, 1 1 ´1,2� �k�G�x1,2

l � � 0 ,

G�xl� � e23D�4
X̀
p�0

�3D�4�p

p!
1

p 2 xl

. (10)

The G0�xl� function in Eq. (9) is a first derivative of
G�xl� and makes wave functions normalized. The correct
solution needs a numerical diagonalization of the Hamil-
tonian which explicitly includes vibrational states of the
four shared oxygens. As can be seen in Fig. 2 the differ-
ence is negligible between a typical spectrum obtained
using approximation (10) and correct numerical treatment.
The ground state of the Hamiltonian (8), with energy
[from Eq. (10)] E0� �k� � D�4 1 x0��k�, corresponds to
the anti-JT polaron. Its effective mass, deduced from
d2x0� �k��d �k2, provides a realistic alternative (exact for
D ! 0 or `) to the available variational approaches [18]
or exact quantum Monte Carlo simulations [19].

An ARPES experiment measures the spectral function
A� �k, v� � 2

1
p G� �k, v� with momentum �k fully resolved,

provided there is no dispersion in the direction perpendic-
ular to the surface. Although LaMnO3 is cubic, because of
the layered AFA magnetic structure, at low temperatures
Mn eg electrons are two dimensional and the spectrum can
be measured,

A� �k, v� �
X
f

j
 fjdy� �k�jGS, `	j2d�E 2 Ef � . (11)

The operator dy� �k� excites a hole from the JT ground state.
Summation over final eigenstates j f	 includes summation
over branch index i � 1, 2 and number of phonons l �
0, 1, . . . , `. The sequence of delta functions in Eq. (11)
should be replaced by convolved local densities of phonon
states, which we approximate by a Gaussian, d�E� !
exp�2E2�2g2��

p
2p g. Substituting solutions (9) and

(10) into Eq. (11), we obtain the spectral function,
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FIG. 2. Energy dependence of the imaginary part of the Green
function at T � 0 and �k � �p�2, 0, 0�. The solid line is the
numerical diagonalization of (5) in the subspace (7). The long
dashed line is the analytical approximations (10) and (12). The
spectral function consists of two asymmetric peaks with mean
values D 1 ´1,2. The zero-phonon line is seen at the adiabatic
ground state polaron energy D�4 [9]. The dashed lines show the
peak positions l1,2 of the uncorrelated electron theory Eq. (3).
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FIG. 3. Angle-integrated photoemission spectrum (solid line)
at (a) T � 0 K and (b) T � 300 K. At room temperature, spins
are disordered, but JT order is not destroyed. For comparison,
the uncorrelated electron (U � 0 limit) band structure density
of states is shown by the dashed lines, with 2D Van Hove sin-
gularities at T � 0 K.

A� �k, v� �
X
l,i

G2�xi
l�

G0�xl�
d�E 2 Ei

l� . (12)

Equation (12) along with (10) gives the ARPES spec-
trum normalized to

R
dv A� �k, v� � 1. The first energy

moment of the spectrum [17] coincides with the free hole
energy calculated in the frozen lattice approximation D 1

´1,2� �k� shown in Fig. 2. The edge of the spectrum corre-
sponds to the polaron creation at energy �D�4. This tran-
sition is weaker by 3 orders of magnitude than the peak at
�D 1 ´1,2��k�.

At room temperature magnetic order is lost. The para-
magnetic state is modeled by a mean field approxima-
tion, namely, scaling the effective hopping integral by 2�3
and allowing hopping in the 6ẑ direction. This modi-
fies the single particle energy band entering Eq. (8) to
´1,2��k� � t�3�22Cz 6 �Cx 1 Cy��. But the JT orbital
order is not destroyed at T � 300 K and Franck-Condon
broadening is still expected. When spins are disordered, �k
is not a good quantum number and additional broadening
is expected. Only phonon broadening of the ARPES along
with peak positions is shown in Fig. 1(b).

The angle-integrated spectrum, shown in Fig. 3 for low
and high temperatures, has a width of about 1.2 eV and is
almost temperature independent. The uncorrelated (U �
0) band structure, shown for comparison, is sensitive to
magnetic order and therefore temperature dependent.

The existing photoemission data [5,6] are consistent
with our predictions. Higher resolution experiments are
needed to test the theory and to unravel the nature of the
lowest energy excitations in the LaMnO3. To make such
an experiment possible, a single domain sample (having
2D dispersion at T � 0 K) is needed, with good control
of oxygen concentration [20].
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