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Networks in complex systems
Complex systems

Large number of components
They interact with each other
All components and/or interactions are different
from each other (unlike in traditional physics)
104 types of proteins in an organism,106 routers, 
109 web pages, 1011 neurons

The simplest property of a complex system: 
who interacts with whom? can be visualized 
as a network
Backbone for real dynamical processes



Why study the topology of 
complex networks?

Lots of easily available data: that’s where the state of the 
art information is (at least in biology)
Large networks may contain information about basic 
design principles and/or evolutionary history of the 
complex system
This is similar to paleontology: learning about an animal 
from its backbone



Plan of my lectures
Part 1: Bio-molecular (protein) networks

What is a protein network?
Degree distributions in real and random networks
Beyond degree distributions: How it all is wired 
together? Correlations in degrees
How do protein networks evolve?

Part 2: Interplay between an auxiliary 
diffusion process (random walk) and modules 
and communities on the Internet and WWW



Collaborators:
Biology:

Kim Sneppen – U. of Copenhagen
Kasper Eriksen – U. of Lund
Koon-Kiu Yan – Stony Brook U.
Ilya Mazo – Ariadne Genomics
Iaroslav Ispolatov – Ariadne Genomics

Internet and WWW:
Kasper Eriksen – U. of Lund
Kim Sneppen – U. of Copenhagen
Ingve Simonsen – NORDITA
Koon-Kiu Yan – Stony Brook U.
Huafeng Xie –City University of New York



Postdoc position
Looking for a postdoc to work in my group at 
Brookhaven National Laboratory in New York
starting Fall 2005
Topic - large-scale properties of (mostly) 
bionetworks (partially supported by a 
NIH/NSF grant with Ariadne Genomics)
E-mail CV and 3 letters of recommendation 
to: maslov@bnl.gov
See www.cmth.bnl.gov/~maslov



Protein networks
Nodes – proteins 
Edges – interactions between proteins

Metabolic (all metabolic pathways of an organism)
Bindings (physical interactions)
Regulations (transcriptional regulation, protein modifications)
Disruptions in expression of genes (remove or overexpress one 
gene and see which other genes are affected) 
Co-expression networks from microarray data (connect genes with 
similar expression patterns under many conditions)
Synthetic lethals (removal of A doesn’t kill, removal of B doesn’t 
kill but removal of both does)
Etc, etc, etc.



Sources of data on 
protein networks

Genome-wide experiments
Binding – two-hybrid high throughput experiments 
Transcriptional regulation – ChIP-on-chip, or ChIP-
then-SAGE
Expression, disruption networks – microarrays
Lethality of genes (including synthetic lethals): 

Gene knockout – yeast 
RNAi –worm, fly

Many small or intermediate-scale experiments
Public databases: DIP, BIND, YPD (no longer 
public), SGD, Flybase, Ecocyc, etc.



MAPK signalingInhibition of apoptosis

Images from ResNet3.0 by Ariadne Genomics



Pathway network 
paradigm shift

Pathway Network



Transcription regulatory networks

Bacterium: E. coli
3:2 ratio

Single-celled eukaryote:
S. cerevisiae; 3:1 ratio



Data from Ariadne Genomics

Homo sapiens

Total: 120,000 interacting 
protein pairs extracted  from 
PubMed as of 8/2004



Degree (or connectivity) 
of a node – the # of neighbors

Degree
K=4

Degree
K=2



Directed networks have
in- and out-degrees

Out-degree
Kout=5

In-degree
Kin=2



How many transcriptional 
regulators are out there?



Fraction of transcriptional 
regulators in bacteria

from Stover et al., 
Nature (2000) 



Complexity of regulation grows 
with complexity of organism

NR<Kout>=N<Kin>=number of edges
NR/N= <Kin>/<Kout> increases with N

<Kin> grows with N
In bacteria NR~N2 (Stover, et al. 2000) 
In eucaryots NR~N1.3 (van Nimwengen, 
2002) 

Networks in more complex organisms 
are more interconnected then in simpler 
ones



Complexity is manifested 
in Kin distribution

E. coli vs H. sapiens



Figure from Erik van Nimwegen, TIG 2003



Table from Erik van Nimwegen, TIG 2003



Protein-protein binding 
(physical interaction)

networks



Two-hybrid experiment

To test if A interacts with B create two hybrids
A* (with Gal4p DNA-binding domain) and B* 
(with Gal4p activation domain)

High-throughput: all pairs among 6300 yeast 
proteins are tested: Yeast: Uetz, et al. Nature (2000), 
Ito, et al., PNAS (2001);  Fly: L. Giot et al. Science (2003)

Gal4-activated reporter gene, say GAL2::ADE2Gal4-binding domain

A* B*



Protein binding network in yeast



Protein binding networks

Two-hybrid nuclear Database (DIP) core set

S. cerevisiae



Degree distributions
in random and real networks



Degree distribution in 
a random network

Randomly throw E 
edges among N nodes
Solomonoff, Rapaport, 
Bull. Math. Biophysics 
(1951)
Erdos-Renyi (1960)
Degree distribution –
Poisson
K~λ±√λ with no hubs
(fast decay of N(K))

( ) exp( )
!

2 /

K

N K N
K

K E N

λ λ

λ

= −

= =



Degree distribution in real 
protein networks

Histogram N(K) is 
broad: most 
nodes have low 
degree ~ 1, few 
nodes – high 
degree ~100
Can be 
approximately 
fitted with 
N(K)~K-γ

functional form
with γ~=2.5

H. Jeong et al. (2001)
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Network properties of 
self-binding proteins 
AKA homodimers

I. Ispolatov, A. Yuryev, I. Mazo, SM
q-bio.GN/0501004.



There are just 
TOO MANY homodimers

• Null-model 
• Pself ~<k>/N
• Ndimer=N • Pself
= <k>
• Not surprising as
homodimers have 
many functional 
roles



Network properties 
around homodimers



Fly: two-hybrid data Human: database data

Likelihood to self-interact vs. K

Pself~0.05, Pothers~0.0002 Pself~0.003, Pothers~0.0002



What we think it means?
In random networks pdimer(K)~K2 not ~K like our 
empirical observation
K is proportional to the “stickiness” of the protein which 
in its turn scales with 

the area of hydrophobic residues on the surface
# copies/cell
its popularity (in datasets taken from a database)
Etc. 

Real interacting pairs consists of an “active” and 
“passive” protein and  binding probability scales only 
with the “stickiness” of the active protein
“Stickiness” fully accounts for higher than average 
connectivity of homodimers



Propagation of signals and 
perturbations in networks



Naïve argument
An average node has <K> first neighbors, 
<K><K-1> second neighbors, 
<K><K-1><K-1> third neighbors
Total number of neighbors affected is
1+<K> + <K><K-1> +<K><K-1><K-1>
+…
If <K-1> ≥ 1 a perturbation starting at a 
single node MAY affect the whole network 



Where is it wrong?

Probability to arrive to a node with K 
neighbors is proportional to K!
The right answer: <K(K-1)>/<K> ≥ 1
a perturbation would spread
Correlations between degrees of 
neighbors would affect the answer



How many clusters?

If <K(K-1)>/<K> >> 1 there is one “giant” cluster 
and few small ones. If <K(K-1)>/<K> ∼ 1 small 
clusters have a broad (power-law) distribution
Perturbation which affects neighbors with probability 
p propagates if 
p<K(K-1)>/<K> ≥ 1
For scale-free networks P(K)~K-γ with 
γ<3, <K2>=∞ ⇒ perturbation always 
spreads in a large enough network

Problem 2: For a given p and γ how large should be the 
network for the perturbation to spread



Amplification ratios 

• A(dir):   1.08 - E. Coli,  0.58 - Yeast
• A(undir): 10.5 - E. Coli, 13.4 – Yeast
• A(PPI):        ? - E. Coli, 26.3 - Yeast

Problem 3: derive the 
above formula for 
directed networks



Beyond degree distributions:
How is it all wired together?



Central vs peripheral 
network architecture

central
(hierarchical)

peripheral
(anti-hierarchical)

From A. Trusina, P. Minnhagen, SM, K. Sneppen, Phys. Rev. Lett. (2004)

random



Correlation profile 

Count N(k0,k1) – the number of links 
between nodes with connectivities 
k0 and k1

Compare it to Nr(k0,k1) – the same 
property in a  random network
Qualitative features are very noise-
tolerant with respect to both false 
positives and false negatives
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Correlation profile of the 
protein interaction network 

R(k0,k1)=N(k0,k1)/Nr(k0,k1) Z(k0,k1) =(N(k0,k1)-Nr(k0,k1))/∆Nr(k0,k1)

Similar profile is seen in the yeast regulatory network



Pajek



Correlation profile of the 
yeast regulatory network

R(kout, kin)=N(kout, kin)/Nr(kout,kin) Z(kout,kin)=(N(kout,kin)-Nr(kout,kin))/ ∆Nr(kout,kin)



Some scale-free networks 
may appear similar

In both networks the degree distribution is scale-free P(k)~ k-γ with γ~2.2-2.5



But: correlation profiles 
give them unique identities

InternetProtein interactions



How to construct a proper 
random network? 



Randomization of a network

given complex 
network random



Basic rewiring algorithm

Randomly select and 
rewire two edges 
Repeat many times

• R. Kannan, P. Tetali, 
and S. Vempala, 
Random Structures 
and Algorithms (1999)

• SM, K. Sneppen, 
Science  (2002)



Metropolis rewiring algorithm

Randomly select two edges
Calculate change ∆E in “energy function” 
E=(Nactual-Ndesired)2/Ndesired

Rewire with probability p=exp(-∆E/T)

“energy” E “energy” E+∆E

SM, K. Sneppen:
cond-mat preprint 
(2002),
Physica A (2004)



How do protein networks 
evolve?



Gene duplication

Pair of duplicated proteins

2 Shared interactions
Overlap=2/5=0.4

Pair of duplicated proteins

5 Shared interactions
Overlap=5/5=1.0

Right after duplication After some time



Yeast regulatory network

SM, K. Sneppen, K.
Eriksen, K-K. Yan, 
BMC Evolutionary Biology 
(2003)



100 million 
years ago



Protein interaction networks
SM, K. Sneppen, K.
Eriksen, K-K. Yan, 
BMC Evolutionary Biology 
(2003)



Why so many genes 
could be deleted without any 

consequences?



Possible sources of robustness 
to gene deletions
Backup via the network (e.g. metabolic 
network could have several pathways for 
the production of the necessary 
metabolite)
Not all genes are needed under a given 
condition (say rich growth medium)
Affects fitness but not enough to kill
Protection by closely related homologs in 
the genome



Protective effect of duplicates

Gu, et al 2003
Maslov, Sneppen, 
Eriksen, Yan 2003

Yeast Worm

Maslov, 
Sneppen, 
Eriksen, Yan  
2003

Z. Gu, … 
W.-H. Li, 
Nature 
(2003)

Maslov, 
Sneppen, 
Eriksen, Yan  
BMC Evol. Biol.
(2003)



Summary
There are many kinds of protein networks
Networks in more complex organisms are more 
interconnected
Most have hubs – highly connected proteins
Hubs often avoid each other (networks are anti-
hierarchical)
There are many self-interacting proteins. Probability to 
self-interact linearly scales with the degree K.
Networks evolve by gene duplications
Robustness is often (but not always) provided by gene 
duplicates



Part 2



Modules in networks and how 
to detect them using the 
Random walks/diffusion

K. Eriksen, I. Simonsen, SM, K. Sneppen, PRL (2003)



What is a module?
Nodes in a given module (or community 
group or functional unit) tend to 
connect with other nodes in the same 
module

Biology: proteins of the same function or 
sub-cellular localization
WWW – websites on a common topic
Internet – geography or organization (e.g. 
military)



Do you see any modules here?



Random walkers on a network
Study the behavior of many VIRTUAL 
random walkers on a network
At each time step each random walker 
steps on a randomly selected neighbor
They equilibrate to a steady state 
ni ~ ki   (solid state physics: ni = const)
Slow modes allow to detect modules 
and extreme edges  



Matrix formalism
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Eigenvectors of the 
transfer matrix Tij
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US Military

Russia



2  0.9626   RU RU RU RU CA RU RU 
?? ?? US US US US ?? 

(US Department of Defence)

3  0.9561   ?? FR FR FR ?? FR ??

RU RU RU ?? ?? RU ?? 

4  0.9523   US ?? US ?? ?? ?? ?? (US  Navy)

NZ NZ NZ NZ NZ NZ NZ

5. 0.9474   KR KR KR KR KR ?? KR

UA UA UA UA UA UA UA



Hacked site





How Modules in the WWW 
influence Google ranking

H. Xie, K.-K. Yan, SM, cond-mat/0409087



How Google works?
Too many hits to a typical query: need to rank 
One could rank the importance of webpages by Kin, but: 

Too democratic: It doesn’t take into account importance of 
webpages sending links 
it’s easy to trick and artificially boost the rank 

Google’s solution: simulate the behavior of many “random 
surfers” and then count the number of hits for every webpage

Popular pages send more surfers your way the Google weight is 
proportional to  Kin weighted by popularity 
Surfer get bored following links use α=0.15 for random jumps 
without any links
Last rule also solves the problem that some pages have no out-links



Mathematics of the Google

Google solves a self-consistent Eq.:

Gi ~ Σj Tij Gj - find principal 
eigenvector 
Tij= Aij/Kout (j)
Model with random jumps:

Gi ~ (1-α)Σj Tij Gj + α Σj Gj 



How do WWW communities 
(modules) influence the Gi?

Naïve argument: communities tend to 
“trap” random surfers they should 
increase the Google ranking of nodes in 
the community



lo
g 1

0(
G

c/
G

w
)

Ecc

Test of a naïve argument  

Naïve argument is completely wrong!



Ecc
Eww



Gc – average Google rank of pages in the 
community; Gw – in the outside world

Ecw Gc/<Kout>c – current from C to W
must be equal to: 
Ewc Gw/<Kout>w – current from W to C

Gc /Gw depends on the ratio between Ecw
and Ewc – the number of edges (hyperlinks)  
between the community and the world









Networks with artificial 
communities

To test let’s generate a scale-free 
network with an artificial community of 
Nc pre-selected nodes 
Use metropolis algorithm with 
H=-(# of intra-community nodes) and 
some inverse temperature β
Detailed 
balance: 



Collaborators:

Kim Sneppen – Nordita + NBI
Kasper Eriksen –Lund U.
Ingve Simonsen – U. of Trondheim

Huafen Xie – City University of NY
Koon-Kiu Yan - Stony Brook U.



Summary

Diffusion process and modules (communities) 
in a network influence each other
In the “hardware” part of the Internet – the 
network of routers (Autonomous systems) --
diffusion allows one to detect modules and 
extreme edges
In the “software” part – WWW communities 
affect Google ranking in a non-trivial way



THE END


