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Abstract
The topology of regulatory networks contains clues to their overall design principles and
evolutionary history. We find that while in- and out-degrees of a given protein in the regulatory
network are not correlated with each other, there exists a strong negative correlation between
the out-degree of a regulatory protein and in-degrees of its targets. Such correlation positions
large regulatory modules on the periphery of the network and makes them rather well
separated from each other. We also address the question of relative importance of different
classes of proteins quantified by the lethality of null-mutants lacking one of them as well as by
the level of their evolutionary conservation. It was found that in the yeast regulatory network
highly connected proteins are in fact less important than their low-connected counterparts.

Introduction

Living organisms need to orchestrate their responses to various
environmental conditions, as well as to step through time-
dependent programs (cycles) necessary for their function. This
is achieved by the virtue of regulation of production, activity
and degradation of their proteins by specialized regulatory
proteins. All proteins in the genome of an organism thereby
form a network with edges pointing away from regulators to
targets of their regulations. The architecture of such regulatory
networks contains clues about their function and evolution.
They were recently shown: (a) to be characterized by a broad
distribution of degrees of individual nodes with a few ‘hub’
proteins having a disproportionately large number of neighbors
[1]; (b) to have those hubs positioned at the periphery of the
network resulting in a global network architecture with soft
modular features centered around individual hubs [2]; (c) to
contain small yet statistically significant local manifestations
of modularity also known as network motifs [3].

An important question is the extent to which one should
view the regulatory network as modular as was suggested, e.g.
in [4], or as more integrated, implied e.g. by gene disruption
studies [5, 6]. The purpose of this work is to analyze the
currently known part of the regulatory network of baker’s
yeast Saccharomyces cerevisiae [7], with respect to global
features of its architecture. We will argue that the picture of

hub-regulated modules positioned on the periphery of the
network should be augmented with a centrally positioned
core region of the network that alone can perform complex
combinatorial computations. At the simplest level of
description every node in a regulatory network is characterized
by just two numbers: its in-degree, given by the number of its
regulatory inputs, and its out-degree, given by the number of
its outputs. These numbers allow us to divide all proteins into
three basic categories illustrated in figure 1.

The first category is formed by the ‘workhorse’ proteins
which have a direct functional role such as, e.g. catalyzing
necessary metabolic reactions, helping other proteins to
properly fold, or just being a part of cell’s structural foundation.
These proteins are needed for the normal functioning of the
cell or for its response to various external stimuli, but they
typically do not regulate the concentration or activity of
other proteins. As such they are characterized by zero out-
degree Kout = 0 in the regulatory network (see figure 1(A)).
Workhorse proteins might have any number of regulatory
inputs depending on the number of their functional roles in the
cell or, alternatively, on the number of distinct environmental
conditions requiring their production. The second and the
third category consist of regulatory proteins with Kout > 0,
which are further subdivided into ‘distributors’ (figure 1(B))
with at most one regulatory input (Kin = 0 or Kin = 1),
and ‘integrators’ (figure 1(C)) regulated by two or more other
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(A) (C)(B)

Figure 1. Three categories of proteins based on their in- and
out-degrees in the regulatory network. (A) Workhorse proteins
(open circles) with Kout = 0 and any Kin; (B) distributors (shaded
circles) with Kout > 0 and Kin = 0 or 1; (C) integrators (filled
squares) with Kout > 0 and Kin � 2. The distinction between
distributors and integrators emphasizes the difference between
regulators that are simply transmitting a given input, and those that
perform some nontrivial computation based on at least two different
input channels.

regulators (Kin > 1). Distributors’ role is to broadcast (and
possibly invert) the regulatory signal they receive to a number
of downstream proteins involved in a given function. The
integrators, on the other hand, have a possibility of a more
advanced combinatorial computation, with an output signal
approximated by a nontrivial logical function of several inputs
[8]. Given that even for the best-studied model organisms
our knowledge of their regulatory networks is far from being
complete, many distributors may in fact be integrators. Thus
the three-tiered classification of proteins attempted in this work
is only a practically implementable proxy to their true status.

Results and discussion

General properties of the network

The currently known part of the regulatory network in baker’s
yeast Saccharomyces cerevisiae downloaded from the YPD
database [7] is visualized in figure 2. It contains 848
protein nodes, out of which 259 regulate the production,
activity and degradation of others (Kout > 0), linked by 1750
regulations. The list of regulatory mechanisms is dominated
by 1276 transcriptional regulations by 125 transcription
factors. Positive regulations outnumber negative ones 3 : 1.
Histograms of out- and in-degrees of protein nodes in this
network are shown in figures 3(A) and (B) respectively. Out-
degrees of individual regulators range between 1 and 71 and
their histogram approximately follows a power law ∝1/Kγ

with γ = 1.5 for about one and a half decades. The in-degree
distribution is more narrow than that of out-degrees and is
better approximated by an exponential decay exp(−βKin) with
β = 0.42. The parameters of our fits are similar to their values
previously reported [9] for a smaller dataset of transcriptional
regulations in yeast.

Contrary to [9] we found no correlation between Kin and
Kout of protein nodes. This can be seen, for example, in the
fact that workhorse proteins (Kout = 0) have the same average
in-degree (2.65 ± 0.1) as regulatory proteins with a non-zero
in-degree (2.53±0.25). At a more detailed level, the in-degree
distributions of workhorse and regulatory proteins are virtually
indistinguishable from each other (see figure 4). The potential
area of downstream influence of a given regulatory protein
is not limited to its immediate regulatory targets. Indeed,

Pajek

Figure 2. The presently known part of the regulatory network in
baker’s yeast S. cerevisiae. This network obtained from Yeast
Proteome Database (YPD) [7] consists of 1750 regulations among
848 proteins by 259 regulatory proteins. Green and red arrows
denote the positive and negative regulations, respectively. Filled
squares correspond to integrators, gray circles to distributors and
open circles to workhorse proteins.

some of these targets themselves may have regulatory outputs
broadcasting the signal further downstream. To quantify this
effect for every regulator we found the number Kdown � Kout

of all of its downstream targets (both direct and indirect).
Similarly, for every node we found the number Kup � Kin of
all regulators that are positioned directly or indirectly upstream
from it in the regulatory network and which thus could in
principle affect its abundance and activity. In figures 3(A) and
(B) we show histograms of these two integrated properties of
nodes. The Kdown distribution is somewhat broader than that
of out-degrees Kout and can be approximated by a power law
with the same exponent γ = 1.5 (dashed line in figure 3(A))
but over a wider range.

The Kup distribution is considerably broader than that of
in-degrees, as it in fact can be approximately fitted by a power
law with an exponent 1.5 (dashed line in figure 3(B)). While
the exponent of the distribution can in principle have any value,
the exponents of both Kdown and Kup are known to be equal to
3/2 for any random network at a special value of its average
connectivity [10, 11]. In fact, we find that distributions of
Kdown and Kup in the yeast regulatory network are indeed
close to their random counterparts defined by randomly
reshuffling the network using the algorithm proposed in [2].
This algorithm explicitly conserves in- and out-degrees of all
nodes in the network while randomizing all of its higher-level
topological properties. We found no statistically significant
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Figure 3. Basic topological properties of the network.
(A) Logarithmically binned histograms of out-degrees Kout (open
diamonds), and total downstream regions of influence Kdown � Kout

(filled circles) of all regulatory proteins. (B) Logarithmically binned
histograms of in-degrees Kin (open diamonds), and upstream
regions (filled circles) of all proteins. Dashed lines in both panels
correspond to a power law with the exponent −1.5. The dot-dashed
curve in the right panel is the exponential distribution
N(Kin) ∝ exp(−0.42Kin).
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Figure 4. In-degrees of regulatory and workhorse proteins are
identically distributed. Histograms of in-degrees of regulatory (red
circles) and workhorse (black squares) proteins in (A) the YPD data
set; (B) chip-on-chip dataset [1] with the P-value cutoff of 0.001.

differences between Kdown (or alternatively Kup) distributions
in real and randomized networks. The close agreement
between the upstream (as well as downstream) regions in
real and randomized networks indicates the relative lack of
modularity in the real network.
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Figure 5. Anti-correlation of in- and out-degrees of neighboring
nodes. The average in-degree 〈Kin〉 in a module consisting of all
direct targets of a given regulatory protein plotted versus its
out-degree Kout. Filled blue symbols represent 259 such modules
for each of the regulatory proteins listed in the YPD database.
Modules with 〈Kin〉 which is at least three standard deviations below
its value in a randomized network are marked with red circles. They
are controlled by regulators with very large out-degrees Kout. In
contrast, modules with higher than average 〈Kin〉 (again at three
standard deviations or more) tend to be controlled by regulators with
low Kout. They are marked with green circles. The standard
deviation was calculated using an ensemble of 100 random networks
generated by the algorithm [2] which strictly conserves Kin and Kout

of every node. The shaded area denotes the typical (one standard
deviation) range of 〈Kin〉 observed in such randomized networks. Its
width decreases with Kout due to the improved statistics.

Peripherally positioned hub-regulated modules

One of the important topological properties of the yeast
regulatory network is that regulatory proteins with high out-
degrees (regulatory hubs) tend to regulate targets with lower
than average in-degrees [2]. This is explicitly demonstrated
in figure 5, which plots the average in-degree 〈Kin〉 of all
targets controlled by a given regulator with the out-degree
Kout. One sees that highly connected regulators tend to
regulate proteins with lower than average 〈Kin〉 and vice
versa. This effect can also be quantified by the correlation
coefficient between out-degrees of regulatory proteins and in-
degrees of their targets. The Pearson correlation coefficient
(see materials and methods) of these variables equal to −0.22
is statistically significant at 9 standard deviations (P-value
around 10−19), while their Spearman rank correlation (see
materials and methods) of −0.21 is similarly statistically
significant. The deficit of connections between hub-regulators
and proteins with multiple regulatory inputs is not a product of
a possible anthropogenic bias of the data in the YPD database.
To confirm this we repeated our analysis using a completely
unbiased full genome assay of binding between 106 yeast
transcription factors and cis-regulatory regions of all 6200
of yeast genes [1]. Again we found a highly statistically
significant anti-correlation between out- and in-degrees of
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protein nodes connected by edges of this network: the Pearson
correlation coefficient equal to −0.17 is statistically significant
at about 12 standard deviations (P-value around 10−33).

The computational core of the regulatory network

The central region of the yeast regulatory network is formed by
206 known regulations of one of the 259 regulatory proteins
by another. In the absence of such regulations multi-step
programs (cycles) of gene expression as well as non-trivial
combinatorial responses to external or internal stimuli would
be impossible. In this work we advocate further subdividing
regulatory proteins into integrators and distributors. While
the distributors’ role is to broadcast the regulatory signal
they receive to their downstream targets, it is integrators
(marked as black squares in figure 2) that predominantly
perform computations. We have found that not only each
integrator by definition receives several regulatory inputs but
also it tends to send several output signals to other regulators.
One can show that these two properties are in fact strongly
correlated with each other: the Spearman rank correlation
coefficient between the Kin and KR

out � Kout, the number of
regulatory outputs directed towards other regulators, is equal
to 0.21, which is statistically significant at P-value of 4×10−4

(a very respectable number for only 259 data points). It should
be contrasted to a complete lack of correlation between a
regulatory protein and its total number of regulatory outputs
(the Pearson rank correlation of 0.05 with P-value of 0.22).
This confirms and extends our previous observation that
distributions for regulatory and non-regulatory proteins are
in fact identical to each other.

To quantify how interconnected is the computational core
of the regulatory network we counted the number of edges
connecting pairs of 41 integrators to each other. There are 30
such regulations in the actual network. This number should
be compared to its value 20 ± 4 in a randomized version
of the network in which in- and out-degrees of individual
nodes were strictly conserved [2]. This excess is offset by
fewer regulations of integrators by distributors (124 in the real
network versus 134 ± 4 in a random one). The distributors do
not appear to be more connected to each other than expected by
pure chance alone (28 connections versus 29 ± 2). Similarly
edges pointing away from an integrator to a distributor are
about equally scarce in the real network (5) and in its null-
model (4 ± 2).

We also found a positive correlation between in-degrees
of integrators that regulate each other. The Pearson
correlation coefficient between such in-degrees is 0.36, which
is statistically significant at around 2 standard deviations (P-
value of 0.03). The Spearman rank correlation equal to 0.38
has a comparable P-value. A larger network of regulations
among all regulators also contains a trace of the positive
correlation between in-degrees of connected nodes but not at
a statistically significant level. This indicates that it is indeed
integrators which are responsible for this correlation. All
these observations point to integrators forming the centrally
positioned heavily interconnected computational core of the
yeast regulatory network.
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Figure 6. Anti-correlation between the importance of a protein and
its in- and out-degrees in the regulatory network. The fraction of
yeast proteins found to be essential for the survival of the cell [13]
as a function of out-degree Kout (A) and in-degree Kin (B). Both
panels demonstrate that the ‘importance’ of a protein decreases with
its degree in the regulatory network. To improve the statistics the
degree is used in a cumulative fashion: we plot the fraction of
essential proteins among all tested proteins with the degree at or
above Kout (in panel (A)) or Kin (in panel (B)).

Relative importance of proteins as a function of their
in- and out-degrees in the regulatory network

A relative importance (essentiality) of a protein for the basic
functioning of the cell can be crudely assessed by whether
a mutant cell lacking this particular protein survives (viable
null-mutant) or dies (lethal null-mutant). Hub-proteins are
commonly believed to be more important and therefore null-
mutants lacking one of them are expected to have higher than
average chances of being lethal. Such positive correlation
between protein’s connectivity and the likelihood of its null-
mutant to be lethal was indeed observed in the protein–protein
interaction network in yeast [12]. To test this hypothesis for
the yeast regulatory network in figure 6(A) we plot the fraction
of yeast regulators found to be essential for the survival of the
cell [13] as a function of their out-degree. Contrary to this
hypothesis we found that very highly connected regulators
Kout > 20 are in fact never essential: null mutants of all 22
of them are viable, which is statistically significant at the
0.81522 = 0.011 level. For low to intermediately connected
regulators we found no statistically significant correlation
between their out-degree and their chances to be essential.

The likelihood of a protein to be essential is also
negatively correlated with its in-degree. Indeed, the average
in-degree of essential proteins present in our dataset is equal
to 2.3 ± 0.1, while that of non-essential ones is significantly
higher than 2.7 ± 0.1. Figure 6(B) quantifies the same effect
by showing that the fraction of essential proteins goes down
with the in-degree in the regulatory network. This apparent
insignificance of ‘in-degree hubs’ can be tentatively attributed
to the following simple observation: the expression level of a
protein controlled by many regulators tends to go up and down
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by a significant factor in response to internal and external
stimuli. Therefore, the organism is likely to be adapted to
survive even in the complete absence of such proteins (a 100%
decrease in the expression level). This is in agreement with
a recent observation that essential proteins are characterized
by a reduced level of uncertainty and noise in their expression
levels [14].

Another measure commonly used to quantify the
‘importance’ of a given protein is the extent of its
evolutionary conservation quantified by the ratio KA/KS

between frequencies of amino acid changing (KA) and silent
(KS) nucleotide substitutions. More important proteins tend
to be more conserved in the course of evolution and hence are
characterized by smaller values of KA/KS . When we used
KA/KS [15] as an alternative measure of the importance of
a protein again we found no significant correlations with its
in- and out-degrees in the regulatory network: the P-value of
the Spearman rank correlation between KA/KS and Kin is in
a statistically insignificant 0.1–0.2 range. This was found to
be true for both the database-derived (YPD) and the high-
throughput (ChIP-on-chip) datasets. If anything, regulatory
hubs proved to be less ‘important’ than their low-connected
counterparts: a positive Spearman correlation coefficient of
0.13 between KA/KS and Kout of regulatory proteins in
the YPD database (which at P-value 0.04 is just marginally
statistically significant) hints that highly connected regulators
tend to be less evolutionary conserved.

Once again our findings about the yeast regulatory
network are opposite to those previously reported for the
yeast protein–protein interaction network, where a small
yet statistically significant negative correlation between the
KA/KS and the number of interaction partners of a protein
was detected [14]. This original observation was subsequently
questioned [16, 17] and tentatively attributed to indirect
effects due to a very strong negative correlation between the
evolutionary rate and the abundance of a protein [18].

Conclusions

Above we presented a number of empirical observations
describing the topology of the yeast regulatory network. As
clearly visible in figure 3 this network does not break up into
multiple isolated modules corresponding to cell’s responses to
various perturbations. In contrast, its different parts appear to
be rather well interconnected with each other: the majority of
all proteins are simultaneously controlled by several regulatory
proteins, which in their turn control multiple targets.

We found no correlation between the number of regulatory
inputs and regulatory outputs of a protein. In other words, the
average number and the distribution of regulatory inputs of
non-regulatory (workhorse) proteins are the same as that of
their regulatory counterparts. This observation is somewhat
surprising since proteins from these two categories process
their regulatory inputs in different ways: while regulatory
proteins propagate the regulatory signal further downstream,
the workhorse proteins simply act based on it.

The complete lack of correlation between in- and out-
degrees of the same protein should be compared to a

strong negative correlation between out-degrees of regulatory
proteins and in-degrees of their targets. In particular, highly
connected (hub) regulators tend to regulate proteins with lower
than average in-degree. This causes modules controlled by
such hub-regulators to be relatively well separated from each
other and the rest of the network [2]. Indeed, targets of a given
hub-regulator tend to belong exclusively to its module and are
therefore coupled to the rest of the network only through this
regulator. Visually, such modules tend to be positioned on the
periphery of the network away from its densely interconnected
core region (see figure 2). This trend was reported [19] to
be even more pronounced in simpler (prokaryotic) organisms
such as E. coli. It is evident from a large number of the so-
called single input modules [19] consisting of a hub-regulator
exclusively controlling a group of proteins with Kin = 1. More
complicated wiring of the regulatory network in eukaryots [8]
manifests itself in a softer nature of this correlation in yeast.

The core of the regulatory network is formed by the set
of regulations exerted by one regulatory protein on another.
Integrators (regulators with two or more inputs) constitute the
most complex and interconnected part of this core region.
It was shown above that on average integrators also tend to
regulate more other regulatory proteins than their distributor
counterparts. Moreover, the positive correlation between
numbers of inputs of integrators which are directly connected
to each other in the regulatory network hints at several
hierarchical levels present in this network. These levels are
characterized by progressively increasing numbers of inputs of
the regulatory proteins involved. This means that a somewhat
arbitrary dividing point (2 or more regulatory inputs) we chose
to separate integrators from distributors can be shifted up and
down without changing our qualitative findings. To summarize
we demonstrated that the higher is the number of regulatory
inputs of a regulator, the higher is the number of its outputs
directed toward other regulators and coincidentally the higher
is the average number of inputs of those regulators.

We next addressed the question of relative importance of
different proteins quantified by the lethality of null-mutants
lacking one of them as well as the level of their evolutionary
conservation. We have found negative correlation between
the importance of a regulatory protein and the number of its
downstream targets. This observation contradicts a naive point
of view that the function ‘sits’ on edges of the network and
hence the importance of the protein is directly proportional
to the number of its immediate neighbors (its degree in the
network in question). That is to say, if each edge in the
network has a certain probability of being indispensable for
the survival of the cell and this probability is independent
for different edges starting at the same protein, then hub-
proteins should be much more essential than their low-
connected counterparts. This argument is obviously incorrect
for the regulatory network where downstream targets of a
given regulator typically correspond to just one function and
thus are not independent of each other. Hence our results
simply indicate that there is no clear correlation between the
importance of a task and the connectivity of regulatory proteins
involved in it.

Since out-degree of a regulator measures only the number
of its direct targets and not to the total number of proteins
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Table 1. The likelihood of a protein to be essential versus the
centrality of its position in the regulatory network. Note that the
fraction of essential proteins among the centrally positioned
integrators is higher than that among more peripherally positioned
distributors, which in its turn is somewhat higher than for workhorse
proteins.

Protein Essential Nonessential Tested Fraction of
type genes genes genes essential genes

Workhorses 67 459 526 0.13(2)
Distributers 33 162 195 0.17(3)
Integrators 10 27 37 0.27(9)

Overall
in data 110 648 758 0.15(1)
Overall in
yeast [13] 1103 4678 5781 0.1915(5)

participating in a given task, our results do not contradict
[20] where it was reported that the importance of a given
functional module tends to increase with the total number
of proteins involved in it. Our observation that highly
connected regulators tend to be somewhat less essential than
their low-connected counterparts can be tentatively attributed
to the peripheral position of the former in the regulatory
network. Indeed, the fraction of essential proteins among
the centrally positioned integrators is higher than that among
more peripherally positioned distributors, which in its turn is
somewhat higher than for workhorse proteins (see table 1)

Materials and methods

The information about the yeast regulatory network was
downloaded from the YPD database [7] at www.proteome.
com/YPD in 2001, when the access to this database was still
free of charge for academic institutions. With 848 protein
nodes linked by 1772 regulations (including self-regulations)
this dataset is considerably larger than the previously
studied [9] transcription regulatory network consisting of 837
transcriptional regulations of 491 genes by 124 transcription
factors. To eliminate potential artifacts in our classification
scheme we excluded 22 self-regulations present in this dataset.
That left us with 1750 regulations and 259 regulatory proteins.
In some parts of this work we also utilized the results of the
‘ChIP-on-chip’ high-throughput experiment [1] which tested
the in vivo binding of 106 yeast transcription factors to the
upstream regulatory regions of genes encoding all 6270 of
yeast proteins. The regulatory network with 4418 regulations
was obtained from the raw experimental data by imposing a
conservative P-value cutoff [1].

The system-wide data on viability of S. cerevisiae’s
null-mutants used in our study were taken from [13] in
which 1103 essential (non-viable null-mutants) and 4678 non-
essential (viable null-mutants) yeast proteins were reported.
The lists of viable and non-viable null-mutants as reported
in [13] were downloaded from the Saccharomyces Genome
Database (http://genome-www.stanford.edu/Saccharomyces).
The ratios were reported in [15] where a comparative analysis
of genomes of four yeast species was performed. The data were
downloaded from the website maintained by the authors of

this paper: http://www.broad.mit.edu/annotation/fungi/comp
yeasts/downloads.html.

When comparison with a random network was used in
this paper such random network was generated using the
edge switching algorithm introduced in [2]. This algorithm
strictly conserves both in- and out-degrees of every node,
while randomly reassigning the neighbors. The set of
Matlab programs performing such randomization is available
at http://www.cmth.bnl.gov/∼maslov. All networks were
visualized using the Kamada–Kawai algorithm [21] built into
the Pajek software tool for Windows 32 [22]. Pajek is free to the
academic users and can be downloaded at http://vlado.fmf.uni-
lj.si/pub/networks/pajek.

In sections of the paper we used Pearson’s rank
coefficient. For example, between Ki(out) and Ki(in) across
all regulations i the Pearson coefficient is the product moment
coefficient

r =
∑

i (Ki(out) − 〈K(out)〉)(Ki(in) − 〈K(in)〉)√∑
j (Kj (out) − 〈K(out)〉)2

∑
l (Kl(in) − 〈K(in)〉)2

.

(1)

For our data set with n = 1750 regulatory links the obtained
r = −0.22 has an estimated standard deviation of about
1/

√
n − 3 = 0.03. Therefore we report a highly significant

negative correlation between K(out) of a regulator and K(in)

of its downstream target. The used Spearman rank coefficient
equals the Pearson rank coefficient between the ranks of the
datasets, in our case between ranking of regulatory links
according to the K(out) of their regulator, respectively their
rank according to the K(in) of its target. The Spearman
coefficient only depends on the relative ordering of the
variables, and is thus not sensitive to extreme connectivity
values.
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