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Critical exponents of the anisotropic Bak-Sneppen model

Sergei Maslov,1 Paolo De Los Rios,2 Matteo Marsili,2,3 and Yi-Cheng Zhang2
1Department of Physics, Brookhaven National Laboratory, Upton, New York 11973

2Institut de Physique The´orique, Universite´ de Fribourg Pérolles, Fribourg CH-1700, Switzerland
3International School for Advanced Studies (SISSA) and INFM Unit, Trieste I-34014, Italy

~Received 26 March 1998; revised manuscript received 27 August 1998!

We analyze the behavior of the spatially anisotropic Bak-Sneppen model. We demonstrate that a nontrivial
relation between critical exponentst and m5d/D, recently derived for the isotropic Bak-Sneppen model,
holds for its anisotropic version as well. For the one-dimensional anisotropic Bak-Sneppen model, we derive
an exact equation for the distribution of avalanche spatial sizes, and extract the valueg52 for one of the
critical exponents of the model. Other critical exponents are then determined from previously known exponent
relations. Our results are in excellent agreement with Monte Carlo simulations of the model as well as with
direct numerical integration of the new equation.@S1063-651X~98!13512-2#

PACS number~s!: 05.40.1j, 64.60.Ak, 64.60.Fr, 87.10.1e
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Ever since its introduction five years ago, the Ba
Sneppen~BS! model@1# was a subject of considerable the
retical interest. Its relevance relies on the fact that it provi
a very simple mechanism of self-organized criticality@2#. In
fact, the Bak-Sneppen model is the simplest representativ
a broad class of extremal models, which all naturally evo
towards a scale-free stationary state@3#. An extremely rich
dynamic critical behavior arising out of truly minimalisti
dynamical rules has inspired numerous analytical and
merical investigations of the Bak-Sneppen model@3–10#.

In this work we introduce and study ananisotropicver-
sion of the original Bak-Sneppen model. In one dimens
the dynamics is as follows: the configuration of the system
fully defined by the value of variablef i for each lattice sitei.
At every time step the smallest variable in the system
that at itsright nearest neighbor are replaced with new ra
dom numbers independently drawn from the distribut
P( f )5e2 f @11#. Contrary to the isotropic BS model, whe
both nearest neighbor variables are updated, only the v
able in the preferred direction is updated here. Other mec
nisms of introducing spatial anisotropy to the rules of t
original BS model were recently studied in Refs.@12,13#. As
we shall see, the universality of the critical behavior ma
fests itself in the fact that any realization of the anisotropy
the original BS model gives rise to the same set of criti
exponents@12#. The generalization of our version of anis
tropic BS model to higher dimensions is straightforwa
only d neighbors of the global minimal site located in po
tive directions of corresponding coordinates are upda
along with it.

This work is devoted to analytical and numerical study
exponents of the anisotropic Bak-Sneppen model. The m
observations used in the analytical part of this study are
follows. ~i! The general scaling theory of Ref.@3# developed
for an arbitrary extremal model reduces the number of in
pendent critical exponents to just two.~ii ! The relationt(m)
between two remaining exponentst and m5d/D, recently
derived in@8,9# for the isotropic Bak-Sneppen model in a
arbitrary dimension, holds for its anisotropic version as w
Finally, ~iii ! in the one-dimensional anisotropic BS mod
the exponentg52, describing the divergence of the avera
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avalanche size, can be derived from theexactmaster equa-
tion for the probability distribution of avalanche spatial size
This equation, which we derive in this paper, complime
that for the probability distribution of avalanche tempor
durations@8#. From the exact resultg52 it follows that the
values of exponentst and m in the one-dimensional aniso
tropic BS model are related viat52m. Using the approxi-
mate form of the functiont(m), derived in@9#, we can give
an analytical estimate of the exponentst and m in a 1D
anisotropic BS model. Indeed, they must lie at the inters
tion point of thet52m line and thet(m) curve, valid for an
arbitrary BS model@9#. These analytical estimates are in e
cellent agreement with the direct numerical integration of
exact master equation for the probability distribution fun
tion of the avalanche spatial sizes, givingm50.588(1) and
t51.176(2), aswell as Monte Carlo simulations performe
by us and by the authors of Refs.@12,13#.

The scale-free stationary state of an arbitrary extrem
model can be characterized by a number of critical ex
nents. Several scaling relations, reviewed and discusse
Ref. @3#, reduce this variety to only two independent exp
nents, such ast for the power law in the distributionP(s)
;s2t of avalanche temporal durationss and the dynamic
exponentm. The latter exponent relates the avalanche te
poral durations to its spatial volumeV(s) asV(s);sm. Here
the spatial volume is defined as the number of distinct s
updated at least once during this avalanche. In the notatio
Ref. @3#, m5d/D ~or m5dcov/D if the set of updated~cov-
ered! sites is not compact, but instead forms a fractal
dimensiondcov).

The Bak-Sneppen model in an arbitrary dimension a
with an arbitrary anisotropy has an additional simplificati
@3#: since variables are simply replaced with new rand
numbers and have no memory about their previous valu
the dynamics within a single avalanche is totally independ
from what happened before it started. This observation@3#
enables one to simulatef avalanches~for definitions see@3#!
for an arbitrary value off, which can be above as well a
below the critical point, without specifying variables at pa
sive sites~those withf i. f ) prior to avalanche. Another im
7141 © 1998 The American Physical Society
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portant consequence of the absence of interavalan
memory is that in any variant of the BS model there are
correlations between sizes of subsequent avalanches.
statement isnot a result of any kind of mean-field approx
mation. Rather it is a clear logical consequence of the
namical rules of the Bak-Sneppen model.

In @8# one of us derived a master equation for the dis
bution P(s, f ) of avalanche durationss, valid for a general
BS model. Let us recall briefly the sequence of logical st
leading to this equation. The starting point is the analysis
the signal~minimal number as a function of time! f min(t) of
the model using an auxiliary parameterf. The intersection of
this signal with the horizontal line drawn atf identifies the
sequence off avalanches, following one another. In oth
words, if f min(t).f, fmin(t1k),f for 1<k,s, and f min(t
1s).f, we say that anf avalanche of size~temporal dura-
tion! s has occurred@3#. The sequence off avalanches is
characterized by the distributionP(s, f ) of their sizess. One
can investigate how this distribution changes under an infi
tesimal increase off from f to f 1d f . The change occurs
simply because when the horizontal line atf is lifted, some
intersections with the signalf min(t) disappear. This mean
that two consecutivef avalanches of~temporal! sizess1 and
s2 merge into a singlef 1d f avalanche of sizes11s2 . The
occurrence of this event implies that at least one of theV1

;s1
m sites, updated during the course of the first avalanc

has f , f i, f 1d f . Taking into account that, as we argue
above, subsequent avalanches in the Bak-Sneppen mod
uncorrelated, one can write the balance of loss and gainf
avalanches of sizes as f is increased. The resulting mast
equation for the distributionP(s, f ) is given by

] f P~s, f !52smP~s, f !1 (
s151

s21

s1
mP~s1 , f !P~s2s1 , f !.

~1!

Strictly speaking, in order for the above equation to beexact
one needs to replacesm with the average number of update
sitesV(s, f ), where the average is taken over allf avalanches
of sizes. As was observed numerically, this quantity has
insignificantf dependence and its larges asymptotics is well
described by the power lawV(s, f ).Asm. It was suggested
in @8# and later convincingly confirmed numerically in@9#
that the critical exponentm uniquely determines the scalin
properties ofP(s, f ). This justifies our substitution ofV(s, f )
by its asymptotical formsm in Eq. ~1! ~the constantA in front
of sm was absorbed by redefinition off ).

The numerical integration of Eq.~1! with initial condi-
tions P(s, f 50)5ds,1 shows that asf approaches some criti
cal valuef c(m), P(s, f ) develops a power-law form with a
diverging cutoff:P(s, f )5s2tF„ss( f c2 f )…. Above f c there
is a finite probabilityp`( f ) to start an avalanche that nev
ends. The possibility of such an event shows up in Eq.~1!
through the ‘‘normalization catastrophe,’’ when(s51

` P(s, f )
for f . f c starts to fall below unity. This deviation is attrib
uted to the appearance of the ‘‘infinite avalanche’’ w
probability p`( f );( f 2 f c)

b. This way the overall normal-
ization(s51

` P(s, f )1p`( f )51 is satisfied at allf. The prop-
erties of Eq.~1! depend on the critical exponentm. Given the
value of this dynamic critical exponent, the remaining exp
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o
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nentst, s5m112t, g5(22t)/s, andb5(t21)/s, as
well as the scaling functionF(x) of the avalanche distribu
tion near the critical point, follow from Eq.~1!. In @9# the
function t(m) and the scaling formF(x) were determined
by numerical integration of Eq.~1! and the expansion aroun
the mean-field pointm51, t53/2. It was shown@9# that to
second order in 12m the functiont(m) is given by

t~m!51.52~12m!1c~12m!21O„~12m!3
…,

~2!

c5 4
3 ~ge1 ln 221!.0.3605.

Herege.0.5772 is Euler’s constant.
Our results for the one-dimensional anisotropic BS mo

are based on the exact equation for the probability distri
tion functionQ(r , f ) of spatial sizesr of f avalanches. The
derivation of this equation is very similar to the derivation
Eq. ~1!, briefly outlined above. The main difference lies
the fact that when an avalanche of spatial sizer 1 merges
with that of sizer 2 , they can overlap to form any spatial siz
between max(r1,r2) and r 11r 221. Contrary to this, in the
temporal domain the merging of avalanches of temporal
rationss1 ands2 always produces an avalanche of tempo
durations11s2 . Let us analyze howQ(r , f ) changes whenf
is increased by an infinitesimal amountd f . Some avalanches
of sizer will merge with the next avalanche. This event c
only occur if one of ther sites, updated in the first avalanch
happens to host the smallest number right after the avalan
is finished. Each of theser sites has a variablef i , which was
randomly drawn fromP( f )5e2 f during the course of the
avalanche. At the end of this avalanche, by the very defi
tion of an f avalanche, all theser sites havef i. f . We can
therefore regard thef i ’s on these sites as randomly draw
from an exponential distribution normalized betweenf and
`. The probability that a particularf i is in the interval
@ f , f 1d f#, to linear order ind f , is just d f . The probability
that at least one of ther sites has anf i in the interval@ f , f
1d f# is rd f 1O(d f2). This implies that the number o
f avalanches which will merge with the next one whenf is
raised tof 1d f is dQ(r )u loss52r d f Q(r , f )1O(d f2). Let
us now consider a merging event between twof avalanches
of size r 1 and r 2 resulting in anf 1d f avalanche of sizer.
There are two scenarios of how this can happen.~i! The
rightmost point of the second avalanche is at distancer from
the leftmost~starting! point of the first avalanche; the con
straint on possible values ofr 1 and r 2 imposed by this sce-
nario is max(r1,r2)<r<r11r221. ~ii ! r 15r , and the second
avalanche is fully contained within the first one. In th
former case, the values ofr, r 1 , andr 2 uniquely specify the
initial site of the second avalanche. Therefore, the proba
ity of this event occurring is just the probabilityd f
1O(d f2) that this site hasf iP@ f , f 1d f#. However, in the
latter case the starting point of the second avalanche ca
any of the firstr 2r 2 sites of the first avalanche. This eve
occurs with a probability (r 2r 2)d f1O(d f2). Putting all
these terms together, we find



l
ity

te

en
he
on

e
o
BS
s
l.

-

r
.

i
de
o

a

itte

-
d

n

nt

ve
en

-

o

dis-

m

s,

ith

PRE 58 7143CRITICAL EXPONENTS OF THE ANISOTROPIC BAK- . . .
] fQ~r , f !52rQ~r , f !1 (
r 151

r

Q~r 1 , f ! (
r 25r 2r 111

r

Q~r 2 , f !

1Q~r , f ! (
r 251

r

~r 2r 2!Q~r 2 , f !. ~3!

This is anexact equation for the distribution of spatia
sizes off avalanches. Unlike our previous results, its valid
does not require any scaling assumptions, such asV(s, f )
;sm used in the derivation of Eq.~1!. Equation~3! has to be
solved with the initial conditionQ(r , f 50)5d r ,2 . Indeed, in
the one-dimensional anisotropic BS model at any time s
~or f 50 avalanche for that matter!, r 52 sites are updated.

A similar but more complicated equation can be writt
for the isotropic one-dimensional Bak-Sneppen model. T
basic object of this equation is the probability distributi
Q(r 1 ,r 2 , f ) of f avalanches replacing preciselyr 1 sites to the
left of the starting point andr 2 sites to the right of it. The
initial condition is given by Q(r 1 ,r 2,0)5d r 1,1d r 2,1 . Al-
though we were unable to derive any analytical expon
relations from this equation, it should be stressed that it c
tains all properties of the one-dimensional isotropic
model, and in principle its numerical integration constitute
viable alternative to Monte Carlo simulations of the mode

Yet another variant of Eq.~3! can be written for the an
isotropic Bak-Sneppen model in dimensions higher than
Let r denote the spatial extent of the avalanche, measu
along the diagonal (1,1, . . . ,1) of thed-dimensional space
In projection to this axis the starting point of an avalanche
always the leftmost point in the avalanche. In order to
scribe the shape of the region covered by the avalanche,
needs to introduce the new exponentz, defined by the aver-
age number of updated sitesnproj(r );r z projected onto the
same point at the distancer along the diagonal from the
starting point. Then the total number of points covered by
avalanche of sizer , ncov(r );nproj(r )r;r 11z. In the 1D
anisotropic BS model,nproj(r )51, and, therefore,z50. By
retracing arguments that led to the derivation of Eq.~3!, it is
easy to see that its higher-dimensional version can be wr
as

] fQ~r , f !52r 11zQ~r , f !

1 (
r 151

r

r 1
zQ~r 1 , f ! (

r 25r 2r 111

r

Q~r 2 , f !

1Q~r , f ! (
r s51

r

r s
z (

r 251

r 2r s21

Q~r 2 , f !. ~4!

The drawback of this equation is that, similar to Eq.~1!, it
requires the input of an additional parameter~critical expo-
nent! z.

Note that Eq.~3! for Q(r , f ) involves onlyQ(r 8, f ) for
r 8<r . Therefore, in principle this distribution can be com
puted numerically forr<R to the desired accuracy. Forwar
numerical integration of Eq.~3! shows that asf→ f c
'1.2865, Q(r , f ) develops a power-law behavior with a
exponentt r51.299(3) ~see Fig. 1!. It is easy to see that in
one dimension the exponentt r of the distribution of ava-
lanche spatial sizes is related to the more familiar exponet
p
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a
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ed

s
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n

n

of the distribution of their temporal durations throught r
5(t21)/m11. Indeed, since asymptotically r
5Asm, s0

12t;P(s.s0)5P(r .As0
m);(As0

m)12tr. Com-
paring powers ofs0 in this expression, one gets the abo
exponent relation. To find values of critical exponents hidd
in Eq. ~3!, we study the behavior of moments^r n& of the
distributionQ(r , f ) as a function off. These satisfy the equa
tion

] f^r
n&52^r n11&1 (

r 151

`

(
r 251

r 1 F2 (
r5r 1

r 11r 221

rn

1r 1
n ~r 12r 2!GQ~r 1 , f !Q~r 2 , f !, ~5!

where the sum overr 1 and r 2 has been transformed int
a sum over r 15max(r1,r2) and r 25min(r1,r2). For
n51, Eq. ~5! reads ] f^r &52^r 2&1( r 151

` ( r 251
r 1 (r 1

2 1r 2
2

1 r 2r 12r 2)Q(r 1 , f )Q(r 2 , f ) 5 2^r 2& 1 ( r 151
` ( r 251

` @r 1
2

1r 2
21r 1r 22min(r1,r2)#/2Q(r 1 , f )Q(r 2 , f ). For f , f c ,

when there are no infinite avalanches and the avalanche
tribution Q(r , f ) is normalized to unity, one gets

] f^r &5
^r &2

2
2

^min~r 1 ,r 2!&
2

. ~6!

Close to the critical point we can neglect the ter
^min(r1,r2)&, since it diverges slower than̂r &2 and we are
left with ] f^r &.^r &2/2. This has an obvious solution

^r &5
2

f c2 f
1OS 1

~ f c2 f !2D . ~7!

FIG. 1. The effective power-law exponentt r
(eff)(R), defined as

t r
(eff)(R)5@ log10Q(R, f )2 log10Q(R21,f )#/@ log10R2 log10(R21)#

for two differentf. Since our method is free from finite-size effect
one can be sure thatf c is in (1.286,1.287) andt r51.299(3).
Q(R, f ) was obtained by numerical integration of Eq.~3! with R
<Rmax5214516 384. A second-order Runge-Kutta method w
d f 51023 was used.
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It has been known for some time that in the Bak-Snep
model as well as in several other extremal models, theam-
plitude of the divergence of̂ r & as f→ f c

2 is given by the
critical exponentg. This exponent describes the critical b
havior of the average avalanche duration as^s&;u f c
2 f u2g. For the original derivation of this fact@14#, see Eq.
~17! in @3#. Actually, as was shown in@8#, this fact can also
be derived from Eq.~1!. Indeed, from this equation it is eas
to see that in the absence of an infinite avalanche the
moment ofP(s, f ) obeys] f^s&5^sm&^s&. Therefore, in the
critical region one has ^r &5^sm&5] f(ln^s&)5g/(fc2f)
1O„( f c2 f )22

…! From Eq. ~7! we conclude that in the an
isotropic one-dimensional Bak-Sneppen model

g52. ~8!

Using the scaling relation@3# g5(22t)/s5(22t)/(1
1m2t), we readily find that Eq.~8! implies t52m. This,
combined with thet(m) relation found in @9#, gives m
50.58(1) andt51.16(2) as coordinates of the intersecti
point ~see Fig. 2!. The uncertainty in these numbers com
from our approximate knowledge of the systematic errors
the t(m) curve, determined by numerical integration of E
~1!. Presently, this integration was performed and an
proximate power-law exponentt was measured forP(s, f )
with s<214.1.63104. To improve the precision we can us
a very accurate value fort r511(t21)/m51.299(3) mea-
sured by direct numerical integration of Eq.~3!. Our re-
sources allowed us to integrate this equation forward for
<214, which is equivalent to measuringP(s, f ) up to s
5r 1/m.1.53107, i.e., over a much wider range than fro
numerical integration of Eq.~1!. Using exponent relations
t52m andt511m(t r21) from t r51.299(3), onegets

t51.176~2!, ~9!

m50.588~1!. ~10!

FIG. 2. The curvet(m) from Ref. @9# is shown along with the
results of Monte Carlo simulations of both isotropic (s) and an-
isotropic (d) BS models in one and two dimensions. The inters
tion point oft(m) with the linet52m determines the exponents o
the 1D anisotropic BS model in agreement with Monte Carlo
sults.
n

st

s
n
.
-

These are our best estimates of two basic exponents o
one-dimensional anisotropic BS model. The Monte Ca
simulations of the anisotropic BS model ind51 are in per-
fect agreement with these values fort andm. Indeed, Head
and Rodgers@13# found m50.59(3), while in @12# it was
measured to bem50.60(1). In @13# they also measured th
exponentp52.42(5) of the distribution of spatial jumps o
the minimal site. This should be compared to our predict
for this exponent based on the scaling relationp511(2
2t)/m52.401(6). We have also performed Monte Carl
simulations of the anisotropic BS model in one and two
mensions. In 1D we foundm1D50.58(1) andt1D51.17(1)
in agreement with@12,13#, our analytical results, and th
direct simulation of Eq.~3!. In two dimensions our Monte
Carlo simulations givem2D50.83(1) andt2D51.35(1). As
shown in Fig. 2, these exponents lie on thet(m) curve, valid
for a general BS model. However, in the 2D anisotropic
model we do not know the exact value ofg to fix the posi-
tion of the exponents on this curve.

We also tested our theoretical prediction^r &.2/( f c2 f )
~which led us tog52) against the direct numerical integra
tion of Eq. ~3!. We measured the first moment^r & of the
distribution Q(r , f ), obtained as described above by dire
numerical integration of Eq.~3!. As expected, the power-law
divergence of̂ r & both above and belowf c has the exponen
21. It can be clearly seen when the numerical derivat
d(^r &21)/d f is plotted as a function off ~see Fig. 3!. This
derivative approaches differentfinite limits as f→ f c60. The
divergence of̂ r & at f c is clearly cut off by the finite sizeR
of avalanches considered. This is illustrated in Fig. 3
showing two curves for two different cutoff sizesR5212 and
214. From the asymptotical value ofd(^r &21)/d f as f→ f c
20, we measure 1/g50.498(3), which yieldsg52.01(2),
in complete agreement with Eq.~8!.

We were able to estimate yet another critical expon
from this plot. As was shown in@8#, the divergence of̂r & in
the overcritical regimeabove fc is given by ^r &5b/( f
2 f c), where b5(t21)/(11m2t) is the ‘‘order param-

-

-

FIG. 3. The plot ofd(^r &21)/d f vs f from the numerical inte-
gration of Eq. ~3! for r<R521251024 ~dashed line! and r<R
5214516 384 ~solid line!. A second-order Runge-Kutta metho
with d f 51023 was used.



to

o

is
o

e
th
pe

s
B

BS

een
e-
as
ua-
he

at
.S.
er

al

PRE 58 7145CRITICAL EXPONENTS OF THE ANISOTROPIC BAK- . . .
eter’’ exponent describing the scaling of the probability
start an infinite avalanchep`( f );( f 2 f c)

b. For p`51
2(s51

` P(s, f ), Eq. ~1! readily gives] f p`5^sm&p` . There-
fore, above the critical point one has^r &5^sm&5] f(ln p`)
5b/(f2fc)1O„( f 2 f c)

22
…! The quadratic fit tod(^r &21)/d f

abovef c gives 1/b52.34(2) orb50.427(4). This is in ex-
cellent agreement with our theoretical predictionb5(t
21)/(11m2t)50.427(6) based on the best estimate
t r51.299(3) and the exponent relationb5(t r21)/(2
2t r).

In summary, we have analyzed the behavior of the an
tropic Bak-Sneppen model. We demonstrated that a n
trivial relation between critical exponentst andm, recently
derived for the isotropic Bak-Sneppen model@8,9#, holds for
its anisotropic version as well. The exponents measured
Monte Carlo simulations of the anisotropic Bak-Snepp
model in one and two dimensions are in agreement with
relation. For the one-dimensional anisotropic Bak-Snep
model we derive a novel exact equation~3! for the distribu-
tion Q(r , f ) of avalanche spatial sizes. We also propo
analogous equations for the one-dimensional isotropic
model and the anisotropic BS model ind.1. By studying
the behavior of the first moment of the distributionQ(r , f ),
we managed to extract the exact valueg52 for one of the
critical exponents of the one-dimensional anisotropic
model. The values of the critical exponentst and m5d/D
-

tt.
f

o-
n-

by
n
is
n

e
S

were found as coordinates of the intersection point betw
t(m) and g(t,m)52 curves. They are in excellent agre
ment with both Monte Carlo simulations of the model
well as results of numerical integration of the master eq
tion for Q(r , f ). We summarize our best estimates for t
exponents in one and two dimensions in Table I.

One of us~S.M.! would like to thank N. D. Mermin for
asking the question that triggered this study. The work
Brookhaven National Laboratory was supported by the U
Department of Energy, Division of Material Science und
Contract No. DE-AC02-98CH10886.

TABLE I. The results from this table are obtained by numeric
integration of Eq.~3! for d51 and Monte Carlo simulations ford
52. The existing exact exponent relations were then applied.

Exponent 1D anisotropic BS 2D anisotropic BS

t 1.176~2! 1.35~1!

m 0.588~1! 0.83~1!

s 0.412~1! 0.48~2!

g 2 1.35~4!

b 0.427~6! 0.73~4!

D 1.701~3! 2.41~3!

p 2.401~6! 2.57~3!
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