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We analyze the behavior of the spatially anisotropic Bak-Sneppen model. We demonstrate that a nontrivial
relation between critical exponentsand w=d/D, recently derived for the isotropic Bak-Sneppen model,
holds for its anisotropic version as well. For the one-dimensional anisotropic Bak-Sneppen model, we derive
an exact equation for the distribution of avalanche spatial sizes, and extract theywafudor one of the
critical exponents of the model. Other critical exponents are then determined from previously known exponent
relations. Our results are in excellent agreement with Monte Carlo simulations of the model as well as with
direct numerical integration of the new equatip81063-651X98)13512-7

PACS numbegps): 05.40:+j, 64.60.Ak, 64.60.Fr, 87.10.e

Ever since its introduction five years ago, the Bak-avalanche size, can be derived from #hectmaster equa-
Snepper(BS) model[1] was a subject of considerable theo- tion for the probability distribution of avalanche spatial sizes.
retical interest. Its relevance relies on the fact that it provide§ his equation, which we derive in this paper, compliments
a very simple mechanism of self-organized criticali®}. In  that for the probability distribution of avalanche temporal
fact, the Bak-Sneppen model is the simplest representative @furations[8]. From the exact resuly=2 it follows that the
a broad class of extremal models, which all naturally evolvevalues of exponents and « in the one-dimensional aniso-
towards a scale-free stationary st§83. An extremely rich tropic BS model are related vie=2u. Using the approxi-
dynamic critical behavior arising out of truly minimalistic mate form of the function(x), derived in[9], we can give
dynamical rules has inspired numerous analytical and Ny analytical estimate of the exponentsand x in a 1D
merical investigations of the Bak-Sneppen mddet10]. anisotropic BS model. Indeed, they must lie at the intersec-

In this work we introduce and study @miSOWOPICVEr- iqn noint of ther= 24 line and ther( ) curve, valid for an

tsfll?an do;gri?czr!gIgzlfgﬁ)k-?te;]%psgnimdrzltdr? ;ntﬁed;msetgﬂiogarbitrary BS mode]9]. These analytical estimates are in ex-
ynamics 1 WS- configura 1€ SYSIEM Reellent agreement with the direct numerical integration of the
fully defined by the value of variablg for each lattice sité.

At every time step the smallest variable in the system an(?ixact master equation for the probability distribution func-

that at itsright nearest neighbor are replaced with new ran- on of the avalanche spatial sizes, givipg- (.)‘588(1) and
dom numbers independently drawn from the distribution”— 1-17&2), aswell as Monte Carlo simulations performed
P(f)=e~' [11]. Contrary to the isotropic BS model, where PY Us and by the authors of Refd2,13, _
both nearest neighbor variables are updated, only the vari- 1h€ scale-free stationary state of an arbitrary extremal
able in the preferred direction is updated here. Other mechdhodel can be characterized by a number of critical expo-
nisms of introducing Spatiai anisotropy to the rules of thenents. Several Scaling rEIationS, reviewed and discussed in
original BS model were recently studied in Refs2,13. As  Ref.[3], reduce this variety to only two independent expo-
we shall see, the universality of the critical behavior mani-nents, such as for the power law in the distributio®(s)
fests itself in the fact that any realization of the anisotropy in~s™" of avalanche temporal duratiorssand the dynamic
the original BS model gives rise to the same set of criticalexponentu. The latter exponent relates the avalanche tem-
exponentd12]. The generalization of our version of aniso- poral duratiorsto its spatial volumé&/(s) asV(s)~s*. Here
tropic BS model to higher dimensions is straightforward:the spatial volume is defined as the number of distinct sites
only d neighbors of the global minimal site located in posi- updated at least once during this avalanche. In the notation of
tive directions of corresponding coordinates are updatedRef.[3], u=d/D (or u=d,/D if the set of updatedcov-
along with it. ered sites is not compact, but instead forms a fractal of
This work is devoted to analytical and numerical study ofdimensiond.,).
exponents of the anisotropic Bak-Sneppen model. The main The Bak-Sneppen model in an arbitrary dimension and
observations used in the analytical part of this study are awith an arbitrary anisotropy has an additional simplification
follows. (i) The general scaling theory of R¢8] developed [3]: since variables are simply replaced with new random
for an arbitrary extremal model reduces the number of indenumbers and have no memory about their previous values,
pendent critical exponents to just tw@. The relationr(w) the dynamics within a single avalanche is totally independent
between two remaining exponentsand u=d/D, recently from what happened before it started. This observaf&in
derived in[8,9] for the isotropic Bak-Sneppen model in an enables one to simulafeavalanchesfor definitions se¢3])
arbitrary dimension, holds for its anisotropic version as well.for an arbitrary value of, which can be above as well as
Finally, (ii) in the one-dimensional anisotropic BS model below the critical point, without specifying variables at pas-
the exponenty=2, describing the divergence of the averagesive sites(those withf;>f) prior to avalanche. Another im-
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portant consequence of the absence of interavalancheentss, o=u+1—17, y=(2—17)/0o, andB=(7—1)/o, as
memory is that in any variant of the BS model there are navell as the scaling functiof (x) of the avalanche distribu-
correlations between sizes of subsequent avalanches. Thisn near the critical point, follow from Eq1). In [9] the
statement is1ot a result of any kind of mean-field approxi- function () and the scaling fornF(x) were determined
mation. Rather it is a clear logical consequence of the dyhy numerical integration of Eq1) and the expansion around
namical rules of the Bak-Sneppen model. the mean-field poink=1, 7=3/2. It was showri9] that to

In [8] one of us derived a master equation for the distri-second order in 1 4 the functionr() is given by
bution P(s,f) of avalanche durations, valid for a general

BS model. Let us recall briefly the sequence of logical steps

leading to this equation. The starting point is the analysis of e (1_ 2 _.\3

the sigiqnal(minimzl number as a fungti%n of timé () of (W) =15 (1= w)+e(1=p)"+O((1= )%,

the model using an auxiliary paramefeihe intersection of @

this signal with the horizontal line drawn &tidentifies the .

sequence of avalanches, following one another. In other c=3(vetIn2—-1)=0.3605.

words, if fin(0>f, fun(t+K<f for 1sk<s, and f,,(t

+9)>f, we say that arf avalanche of sizétemporal dura-

tion) s has occurred3]. The sequence of avalanches is Here y.=0.5772 is Euler's constant.

characterized by the distributid®(s,f) of their sizess. One Our results for the one-dimensional anisotropic BS model

can investigate how this distribution changes under an infiniare based on the exact equation for the probability distribu-

tesimal increase of from f to f+df. The change occurs tion functionQ(r,f) of spatial sizesr of f avalanches. The

simply because when the horizontal linefas lifted, some derivation of this equation is very similar to the derivation of

intersections with the signdl,,,(t) disappear. This means Eg. (1), briefly outlined above. The main difference lies in

that two consecutivé avalanches oftempora) sizess; and  the fact that when an avalanche of spatial sizemerges

s, merge into a singlé +df avalanche of size; +s,. The  with that of sizer,, they can overlap to form any spatial size

occurrence of this event implies that at least one ofWhe between maxg,r,) andr;+r,—1. Contrary to this, in the

~ s/ sites, updated during the course of the first avalanch@emporal domain the merging of avalanches of temporal du-

has f<f;<f+df. Taking into account that, as we argued rationss, ands, always produces an avalanche of temporal

above, subsequent avalanches in the Bak-Sneppen model fgrations, +s,. Let us analyze how(r,f) changes wheh

uncorrelated, one can write the balance of loss and gain ofig jhcreased by an infinitesimal amouht. Some avalanches

avalanches of size asf is increased. The resulting master f sjzer will merge with the next avalanche. This event can

equation for the distributio®(s, f) is given by only occur if one of the sites, updated in the first avalanche,
happens to host the smallest number right after the avalanche
is finished. Each of thegesites has a variablg , which was
randomly drawn fromP(f)=e~ " during the course of the

(1)  avalanche. At the end of this avalanche, by the very defini-
tion of anf avalanche, all these sites havef;>f. We can

Strictly speaking, in order for the above equation tcemact ~ therefore regard thé;’s on these sites as randomly drawn
one needs to replas# with the average number of updated from an exponential distribution normalized betweeand
sitesV(s, ), where the average is taken overfalvalanches . The probability that a particulaf; is in the interval
of sizes. As was observed numerically, this quantity has an[ f,f+df], to linear order indf, is justdf. The probability
insignificantf dependence and its largeasymptotics is well  that at least one of the sites has ard; in the interval[ f,f
described by the power la¥(s,f)=As". It was suggested +df] is rdf+O(df?). This implies that the number of
in [8] and later convincingly confirmed numerically |8]  f avalanches which will merge with the next one wteis
that the critical exponengt uniquely determines the scaling raised tof +df is dQ(r)|,ss= —r df Q(r,f) +O(df?). Let
properties ofP(s, f). This justifies our substitution &f(s,f)  us now consider a merging event between fvavalanches
by its asymptotical forns* in Eq. (1) (the constanfin front  of sizer; andr, resulting in anf+df avalanche of size.
of s* was absorbed by redefinition 6j. There are two scenarios of how this can happ@nThe
The numerical integration of Ed1) with initial condi-  rightmost point of the second avalanche is at distaritem
tions P(s,f=0)= Js, shows that ag approaches some criti- the leftmost(starting point of the first avalanche; the con-
cal valuef(u), P(s,f) develops a power-law form with a straint on possible values of andr, imposed by this sce-
diverging cutoff:P(s,f)=s""F(s”(f.—f)). Abovef. there nario is max(,,ry)<r<r;+r,—1. (ii) r,=r, and the second
is a finite probabilityp..(f) to start an avalanche that never avalanche is fully contained within the first one. In the
ends. The possibility of such an event shows up in @Y. former case, the values ofr,, andr, uniquely specify the
through the “normalization catastrophe,” whéli_,P(s,f) initial site of the second avalanche. Therefore, the probabil-
for f>f. starts to fall below unity. This deviation is attrib- ity of this event occurring is just the probabilitgf
uted to the appearance of the “infinite avalanche” with + O(df?) that this site had; e[f,f+df]. However, in the
probability p..(f)~ (f—f.)?. This way the overall normal- latter case the starting point of the second avalanche can be
ization=g_,P(s,f) + p..(f)=1 is satisfied at all. The prop- any of the firstr —r, sites of the first avalanche. This event
erties of Eq(1) depend on the critical exponent Given the  occurs with a probability (—r,)df+0O(df?). Putting all
value of this dynamic critical exponent, the remaining expo-these terms together, we find

s—1
9¢P(s,f)=—s*P(s,f)+ 21 sEP(s;,f)P(s—s,,f).

$1=
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#Qr,H=-rQ(r,H+ X Qry,f) 2 Q(ra,f)

-1.295

-1.300

+Q(r,f) 21 (r—ry)Q(ry,f). 3)
ro=

-1.305

—_

This is anexactequation for the distribution of spatial 95

sizes off avalanches. Unlike our previous results, its validity '« -1.310 |
does not require any scaling assumptions, sucl (&sf)

~s* used in the derivation of Eql). Equation(3) has to be -1.315
solved with the initial conditiorQ(r,f=0)=4; ,. Indeed, in
the one-dimensional anisotropic BS model at any time step ~ -1.320
(or f=0 avalanche for that matter =2 sites are updated.
A similar but more complicated equation can be written -1-323 % 0.05 010 045
for the isotropic one-dimensional Bak-Sneppen model. The R

basic object of this equation is the probability distribution
Q(r4,r,,f) of f avalanches replacing preciselysites to the

. . . . . (ef) (R} = _ _ _ _
eft of the starting point and, sites to the right of . The - 7D Bt ce e e ftesize ffcrs
initial condition is given by Q(rq,r,,0)= 5r 15 . Al- ’

one can be sure thdt, is in (1.286,1.287) andr,=1.2993).
though we were unable to derive any analytlcal exponengy (R f) was obtained by numerical integration of E&) with R
relations from this equation, it should be stressed that it con<r _—214—16384. A second-order Runge-Kutta method with

tains all properties of the one-dimensional isotropic Bng_lo 3 \was used.

model, and in principle its numerical integration constitutes a

viable alternative to Monte Carlo simulations of the model.
Yet another variant of Eq3) can be written for the an- =(r— 1)/,u+1 Indeed since  asymptotically r

isotropic Bak-Sneppen model in dimensions higher than 1—As" s " P(s>5q) = F"(I’>ASO) ~(As)" . Com-

Let r denote the spatial extent of the avalanche, measured
along the diagonal (1,1. . ,1) of thed-dimensional space. paring powers of, in this expression, one gets the above

exponent relation. To find values of critical exponents hidden
In projection to this axis the starting point of an avalanche is Sh E (3), we study the behavior of moments™ of the
always the leftmost point in the avalanche. In order to de- g y

scribe the shape of the region covered by the avalanche, OlgéstrlbutlonQ(r f) as a function of. These satisfy the equa-

needs to introduce the new exponéntdefined by the aver-
age number of updated sitegro,(r)~r4 projected onto the

FIG. 1. The effective power-law exponerf™(R), defined as

of the distribution of their temporal durations through

same point at the distanaealong the diagonal from the Lo [ ettt
starting point. Then the total number of points covered by afr(rM=—(""hH+ E 2 2 2 p"
avalanche of siz&, Neo(r)~Np(r)r~ri*< In the 1D P
anisotropic BS modeln,(r)=1, and, therefore/=0. By
retracing arguments that led to the derivation of B, it is +r'l(f+—f_)}Q(f+ HQ(r-.,f), (5
easy to see that its higher-dimensional version can be written
as
where the sum over; andr, has been transformed into
91Q(r,f)=—rt"¢Q(r,f) a sum over r,=max(;,r,) and r,—mln(rl,rz) For
r n=1, Eq. (5) readsdy(ry=—(r?)+3; ;=" _ (r;+r2
+ 2 i) rZ Q(rz.f) ot = )Q(r DO F) = —(r?) + 3% 30003
1= rp=r—

+r2+rlrz—mln(rl,rz)]/ZQ(rl,f)Q(rz,f). For f<fc,

i {r §71 when there are no infinite avalanches and the avalanche dis-
+Q(r.) s 1 Q(rz.1). @ gribution Q(r,f) is normalized to unity, one gets

The drawback of this equation is that, similar to Ef), it (12 (min(ry,ry))

requires the input of an additional parameteritical expo- Iry= R (6)

nend £.

Note that Eq.(3) for Q(r,f) involves onlyQ(r’,f) for
r'<r. Therefore, in principle this distribution can be com- Close to the critical point we can neglect the term
puted numerically for <R to the desired accuracy. Forward (min(r,.,r»)), since it diverges slower thafr)? and we are
numerical integration of Eq.3) shows that asf—f, left with 9;(r)=(r)?2. This has an obvious solution
~1.2865, Q(r,f) develops a power-law behavior with an
exponentr, =1.299(3) (see Fig. L It is easy to see that in 1

f (( )

one dimension the exponent of the distribution of ava- (ry=
lanche spatial sizes is related to the more familiar exponent

P )
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FIG. 2. The curver(u) from Ref.[9] is shown along with the FIG. 3. The plot ofd({r)~1)/df vs f from the numerical inte-

.resultslof Monte Carlo s?mulations of bot.h isotrop@X anq an- gration of Eq.(3) for r<R= 212—1024 (dashed ling and r<R
|§otrop!c @) BS mt_)dels in one and two dm_wensmns. The intersec-— »14_ 16384 (solid ling. A second-order Runge-Kutta method
tion point of () with the line7=2. determines the exponents of ith 5f=10"2 was used.
the 1D anisotropic BS model in agreement with Monte Carlo re-
sults.

These are our best estimates of two basic exponents of the
It has been known for some time that in the Bak-Sneppe®ne-dimensional anisotropic BS model. The Monte Carlo
model as well as in several other extremal models,atme  Simulations of the anisotropic BS modeldr=1 are in per-
plitude of the divergence ofr) asf—f_ is given by the fect agreement with these values foand . Indeed, Head
critical exponenty. This exponent describes the critical be- and Rodgerg13] found x=0.593), while in [12] it was
havior of the average avalanche duration és~|f, Measured to be=0.6Q(1). In[13] they also measured the
—f|~7. For the original derivation of this fa¢fl4], see Eq. €xponentr=2.42(5) of the distribution of spatial jumps of
(17) in [3]. Actually, as was shown if8], this fact can also the minimal site. This should be compared to our prediction
be derived from Eq(1). Indeed, from this equation it is easy for this exponent based on the scaling relatior 1+ (2
to see that in the absence of an infinite avalanche the first 7)/u=2.4046). We have also performed Monte Carlo
moment ofP(s,f) obeysd(s)=(s*)(s). Therefore, in the simulations of the anisotropic BS model in one and two di-
critical region one has(r)=(s*)=g;(In(s))=y/(f.—f)  mensions. In 1D we foung,p=0.58(1) andr;p=1.17(1)
+0O((fo—f) 2! From Eq.(7) we conclude that in the an- in agreement with(12,13, our analytical results, and the

isotropic one-dimensional Bak-Sneppen model direct simulation of Eq(3). In two dimensions our Monte
Carlo simulations givex,p=0.83(1) andr,p=1.351). As
v=2. (8) shown in Fig. 2, these exponents lie on tife.) curve, valid

for a general BS model. However, in the 2D anisotropic BS

Using the scaling relatiofi3] y=(2—7)/c=(2—7)/(1 = model we do not know the exact value fto fix the posi-
+u— 1), we readily find that Eq(8) implies r=2u. This, tion of the exponents on this curve.
combined with ther(w) relation found in[9], gives u We also tested our theoretical prediction =2/(f.—f)
=0.58(1) andr=1.16(2) as coordinates of the intersection (which led us toy=2) against the direct numerical integra-
point (see Fig. 2 The uncertainty in these numbers comestion of Eq. (3). We measured the first mome(t) of the
from our approximate knowledge of the systematic errors irdistribution Q(r,f), obtained as described above by direct
the () curve, determined by numerical integration of Eq. numerical integration of Eq3). As expected, the power-law
(1). Presently, this integration was performed and an apdivergence ofr) both above and belowy, has the exponent
proximate power-law exponent was measured foP(s,f) —1. It can be clearly seen when the numerical derivative
with s<2%=1.6x 10*. To improve the precision we can use d({r)~1)/df is plotted as a function of (see Fig. 3. This
a very accurate value fat,=1+(7—1)/x=1.299(3) mea- derivative approaches differefiite limits asf—f.=0. The
sured by direct numerical integration of E€B). Our re- divergence ofr) at f is clearly cut off by the finite siz&
sources allowed us to integrate this equation forwardrfor of avalanches considered. This is illustrated in Fig. 3 by
<2 which is equivalent to measurinB(s,f) up tos  showing two curves for two different cutoff siz&s= 22 and
=rlr=15x10, i.e., over a much wider range than from 2% From the asymptotical value af((r) !)/df asf—f,
numerical integration of Eq¢l). Using exponent relations —0, we measure 3~=0.49§3), which yields y=2.01(2),

7=2u and7=1+ u(7,—1) from 7,=1.2993), onegets in complete agreement with E¢B).
We were able to estimate yet another critical exponent
7=1.1762), (99 from this plot. As was shown if8], the divergence ofr) in

the overcritical regimeabove { is given by (r)=pg/(f
n=0.5881). (10 —f.), where B=(7—1)/(1+u—17) is the “order param-
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eter” exponent describing the scaling of the probability to  TABLE I. The results from this table are obtained by numerical
start an infinite avalanche..(f)~(f—f.)?. For p.=1 integration of Eq.3) for d=1 and Monte Carlo simulations fat

—E§:1P(S,f), Eq. (1) readily givesd;p..=(s*)p... There- =2. The existing exact exponent relations were then applied.
fore, above the critical point one hds)=(s")=d:(In p..)

— BI(f—f)+O((f - fc)iz)! The quadratic fit tcd((r)’l)/df Exponent 1D anisotropic BS 2D anisotropic BS
abovef gives 18=2.34(2) or3=0.4214). This is in ex- T 1.1762) 1.351)
cellent agreement with our theoretical predictigh=(7 i 0.5881) 0.831)
—1)/(1+u—7)=0.427(6) based on the best estimate of o 0.4121) 0.4812)
7,=1.299(3) and the exponent relatiof=(7,—1)/(2 0 2 1.354)
-7). B 0.4276) 0.734)

In summary, we have analyzed the behavior of the aniso- D 1.7013) 2.413)
tropic Bak-Sneppen model. We demonstrated that a non- T 2.4016) 2.573)

trivial relation between critical exponentsand u, recently
derived for the isotropic Bak-Sneppen mof#&9], holds for
its anisotropic version as well. The exponents measured byere found as coordinates of the intersection point between
Monte Carlo simulations of the anisotropic Bak-Sneppenr(u) and y(7,u)=2 curves. They are in excellent agree-
model in one and two dimensions are in agreement with thignent with both Monte Carlo simulations of the model as
relation. For the one-dimensional anisotropic Bak-Sneppemwell as results of numerical integration of the master equa-
model we derive a novel exact equati@®) for the distribu-  tion for Q(r,f). We summarize our best estimates for the
tion Q(r,f) of avalanche spatial sizes. We also proposeexponents in one and two dimensions in Table I.

analogous equations for the one-dimensional isotropic BS

model and the anisotropic BS model ar>1. By Studying One of US(SM) would like to thank N. D. Mermin for
the behavior of the first moment of the distributi@{r,f), ~ asking the question that triggered this study. The work at
we managed to extract the exact valye 2 for one of the Brookhaven National Laboratory was supported by the U.S.
critical exponents of the one-dimensional anisotropic BSDepartment of Energy, Division of Material Science under
model. The values of the critical exponentsand w=d/D Contract No. DE-AC02-98CH10886.
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