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When do two- and three-dimensional materials show
exotic physics familiar from one spatial dimension?
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Outline

• Part I: Some materials are naturally modeled by local spin interactions 
involving >2 spins (e.g., ring exchange).

• Part II: Such interactions, when two-spin interactions are absent, can 
effectively reduce the dimensionality of an “isotropic” system.

• (Examples of familiar problems that “mix” one and two dimensions)

• T-breaking superconductivity and Sr2RuO4: when is there global T 
order in a Josephson-junction array of T-breaking superconductors?

• Similar behavior in frustrated magnetism (2D and 3D pyrochlores)

• Exact self-dualities and dimensional reduction in quantum models 
(Conservation laws and relation to “Kitaev model”)
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Why dimensionality matters, I
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Experiment :  β = 0.322 ± 0.005
Theory :         β = 0.325 ± 0.002
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Dimensionality in quantum magnetism

Universal quantities like critical exponents are largely 
determined by symmetry and dimensionality.

At zero temperature, many models show quantum phase 
transitions between different ground states.

Frequently a quantum phase transition in d dimensions is 
in the same “universality class” as a classical transition in 
d+1 dimensions.

An example is the transverse-field Ising model (S=1/2):

This model’s transition at K=h is of the 2D classical Ising type.

H = −K
∑

i

σz
i σz

i+1 − h
∑

i

σx
i
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Dimensionality in quantum magnetism, II

Materials in one dimension show exotic physics that is 
much more difficult to observe in d > 1.

An example is the quantum Heisenberg model in one dimension:

For S=1/2, this model has a quantum critical ground state (power-law 
correlations) whose elementary excitations are “spinons” of spin 1/2.

This is very different from either the 1D ferromagnet or 2D 
antiferromagnet, which have long-range order and “magnon” (spin-wave) 
elementary excitations of spin 1.

Are there quantum models that show behavior “between” 1D and 2D?

H = J
∑

i

si · si+1, J > 0
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Real materials between 1D and 2D
Diluted quantum magnets

Occupied sites percolate Vacancies percolate
 x=0.1  x=0.9

Percolation threshold for square lattice: 40.7%
La2Cux(Zn,Mg)1-xO4 Static dilution of a 2D S=1/2 Heisenberg AF

(Vajk et al., Science 2002)

At threshold, connected cluster is a random fractal
of dimension 91/48.  Order and stiffness depend on 
competition between 1D and 2D physics.

Here lack of frustration is key.
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Models between 1D and 2D, cont’d

Anisotropic models
(coupled chains)

Nersesyan & Tsvelik
Starykh & Balents

Moukouri

≠Note:

“isotropic” 2D model pyrochlore
(Henley, Tchernyshyov, Moessner et al.)
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Effective Hamiltonians for frustrated magnets:
many-spin interactions in 2D model pyrochlore

Infinitely degenerate set of classical ground states.
1/S quantum fluctuations select out collinear states

with effective energy for Ising spins

and a constraint: tetrahedra have two +1 and two -1 spins.
Result: one-dimensional family of ground states (Henley, Tchernyshyov, 

Moessner, et al.) but two-dimensional finite-T phase transition.

H = −K
∑
!

s1
!s2

!s3
!s4

!, s = ±1
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T-breaking superconductivity
Familiar superconductors break a continuous U(1) symmetry at the 
superconducting phase transition: this U(1) corresponds to the SC phase.

Magnets, on the other hand, break time-reversal symmetry (T).

We now know of several superconducting phases that break T: when the Cooper 
pair wavefunction is complex, it and its conjugate are degenerate 
superconducting states related by T.
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T-breaking superconductivity
Familiar superconductors break a continuous U(1) symmetry at the 
superconducting phase transition: this U(1) corresponds to the SC phase.

Magnets, on the other hand, break time-reversal symmetry (T).

We now know of several superconducting phases that break T: when the Cooper 
pair wavefunction is complex, it and its conjugate are degenerate 
superconducting states related by T.

The standard example is the A phase of superfluid helium-3 (a p+ip 
superconductor).  Other examples are:

likely p+ip ordering in Sr2RuO4 , but some experimental questions
FQHE states of composite fermions (Moore-Read, Haldane-Rezayi)

RVB theories predict d+id ordering in hydrated NaxCoO2
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Geometric phases in Josephson-coupled 
T-breaking superconductors
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Recall the phase-sensitive 
measurements that confirmed d order 
in the cuprates: Tunneling into two 
faces of a single crystal gives a 
positive sign for s order, but a 
negative sign for d order.
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Geometric phases in Josephson-coupled 
T-breaking superconductors

s

s
φa

φb

d

Recall the phase-sensitive 
measurements that confirmed d order 
in the cuprates: Tunneling into two 
faces of a single crystal gives a 
positive sign for s order, but a 
negative sign for d order.

Φ
A real superconductor like p or d generates only phases
0 or π from such angle-resolved tunneling.

Complex superconductors like p+ip and d+id generate 
continuously variable phases; in turning by a geometrical 
angle, a Cooper pair picks up a phase. 
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Josephson-junction arrays: classical treatment
Statistical physics of geometric phases in tunneling

H = −EJ

∑
〈ij〉

cos θij

We describe each superconducting grain by a 
superconducting phase and an Ising variable: 
the Ising variable s=±1 describes whether the 
grain has order parameter px+ipy or px-ipy.

The (classical) energy depends on the gauge-
invariant phase difference across the junction, 
which includes both variables.
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Josephson-junction arrays: classical treatment

H = −EJ

∑
〈ij〉

cos θij

We describe each superconducting grain by a 
superconducting phase and an Ising variable: 
the Ising variable s=±1 describes whether the 
grain has order parameter px+ipy or px-ipy.

The (classical) energy depends on the gauge-
invariant phase difference across the junction, 
which includes both variables.

Questions:

How does this geometric coupling affect 
superconductivity?

When is there macroscopic T-breaking?
(When is there Ising order)

Example: hexagonal lattice

d±id

d±id

d±id

d±id

d±id

!1

!3

!2
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Josephson-junction arrays: classical treatment

H = −EJ

∑
〈ij〉

cos θij

Around each triangular face of the lattice,
the Ising variables generate a gauge flux
for the superconducting phases.

Single-valuedness requires that the phase
on moving a Cooper pair around a plaquette 
be equivalent to 0:

d±id

d±id

d±id

d±id

d±id

!1

!3

!2

k = 1 for p± ip, k = 2 for d± id

2kπ

3
(s1 + s2 + s3) + θ12 + θ23 + θ31 = 2πn.

Hence for this lattice, the only ground states are 
uniform in both the Ising and phase variables.

(as Landau-Ginzburg theory predicts)
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Josephson-junction arrays: classical treatment
Introduction to defects (fractional vortices)

On a triangular face, if all three corners are up (s=1) then 
there is no frustration of the superconducting phase, and 
similarly if all three corners are down.

What if two are up and one is down, or vice versa?  Such a 
configuration looks like a fractional vortex from the point of 
view of the superconducting phases.

Since vortices in 2D are known to mediate the Kosterlitz-
Thouless phase transition, one might wonder whether these 
fractional vortices are important.

For this lattice, fractional vortices are
confined: only domain wall kinks carry
an unscreened fractional vortex.  This
is not be the case for other lattices. 
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Josephson-junction arrays: classical treatment
General approach for all lattices

Separate free energy into XY (with fluxes) and entropic parts

The entropic part is simply geometry: how many 
configurations of Ising variables s correspond to a given 
arrangement of fluxes F ?

For the triangular lattice there are no free fractional fluxes 
(plaquettes with nontrivial geometric phase), because the 
entropic term is confining.

Z =
∑
si,φi

e−βH

=
∑

φi,F 〈ijk〉
Ze(F 〈ijk〉)e−βH(φi,F

〈ijk〉),

Ze(F 〈ijk〉) =
∑
si

δ(F 〈ijk〉 − 2π(si + sj + sk)/3). (1)
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Josephson-junction arrays: classical treatment

Now consider the square lattice:

For k=2 (d±id) all Ising configurations are U(1) gauge 
equivalent to the uniform configuration: there is no 
coupling between the Ising variables and 
superconducting variables.
The Ising variables are disordered even at T=0.

kπ

2
(s1 + s2 + s3 + s4) + θ12 + θ23 + θ34 + θ41 = 2πn



Montauk Yacht Club    16 September 2004

Josephson-junction arrays: classical treatment

Now consider the square lattice:

For k=2 (d±id) all Ising configurations are U(1) gauge 
equivalent to the uniform configuration: there is no 
coupling between the Ising variables and 
superconducting variables.
The Ising variables are disordered even at T=0.

For k=1 (p±ip) ground states have 0,2, or 4 up-spins 
on each plaquette.  This is a “bond-ordered” state with 
one-dimensional entropy: choosing the Ising spins on 
one row and one column determines all others.

Such one-dimensional families of ground states also 
appear in certain 2D frustrated magnets (more later).

kπ

2
(s1 + s2 + s3 + s4) + θ12 + θ23 + θ34 + θ41 = 2πn
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Josephson-junction arrays: classical treatment

Most interesting of all is the honeycomb lattice: the 
ground-state constraint

kπ

3
(s1 + s2 + s3 + s4 + s5 + s6) = 2πn, n ∈ Z.

can be mapped onto a dual version of Baxter’s “three color model”: 
the colorings of the bonds of the honeycomb lattice by 3 colors, in such
a way that all three colors meet at each vertex.

The connection is that the Ising variables
give the chirality of the three colors
meeting at a vertex.

There is an extensive ground-state entropy
with critical Ising correlators (confirmed
numerically).  Melting occurs by fractional
vortices (cf. kagomé XY AF).

Defects of Ising variables seem to realize orbifolds of 2D c=2 SU(3) CFT.
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Josephson-junction arrays:
summary of classical results

So far we have seen:
perfect T-breaking order (hexagonal lattice)
disorder or bond order (square lattice, depending on d or p case)
criticality and melting by fractional vortices (honeycomb lattice)

For real experiments on random polycrystalline samples, it thus seems likely 
that the global T-breaking transition is suppressed significantly below the 
superconducting transition, perhaps all the way to zero temperature.
The geometric dependence of Josephson tunneling is crucial.
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Josephson-junction arrays: summary

So far we have seen:
perfect T-breaking order (hexagonal lattice)
disorder or bond order (square lattice, depending on d or p case)
criticality and melting by fractional vortices (honeycomb lattice)

For real experiments on random polycrystalline samples, it thus seems likely 
that the global T-breaking transition is suppressed significantly below the 
superconducting transition, perhaps all the way to zero temperature.
The geometric dependence of Josephson tunneling is crucial.

Consider again the case of p±ip
superconductors on the square lattice,
where we found a one-dimensional
set of ground states with bond order.

These ground-state phenomena are familiar
from some frustrated magnets in 2D...
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The configurations satisfying the square-lattice constraint of 0, 2, or 4 
up-spins per plaquette are also the ground states of the gauge-like 
Hamiltonian

We will use this as an approximate description of the finite-energy 
physics: it corresponds to “integrating out” the superconducting 
phases, consistent with symmetry.  The “gauge group” is one-
dimensional and consists of flipping all spins along one row or one 
column.

The main approximation (appropriate at high temperatures) is that the 
vortex-vortex interaction is short-ranged.

There are other physical situations where similar “right-angle ice” 
models appear:

Dimensional reduction in classical case

H = −K
∑
!

s1
!s2

!s3
!s4

!, s = ±1
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Frustrated magnetism on the checkerboard lattice

Now the JJ array looks very much like the 1/S theory of the Heisenberg 
antiferromagnet on the checkerboard lattice:
The “tetrahedra” with diagonal interactions are intended to model the physics 
of corner-sharing tetrahedra in 3D pyrochlores.

In the classical limit (infinite S), there
is a highly degenerate set of ground states,
labeled by Ising variables.
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Now the JJ array looks very much like the 1/S theory of the Heisenberg 
antiferromagnet on the checkerboard lattice:
The “tetrahedra” with diagonal interactions are intended to model the physics 
of corner-sharing tetrahedra in 3D pyrochlores.

In the classical limit (infinite S), there
is a highly degenerate set of ground states,
labeled by Ising variables.

Turning on 1/S interactions generates
an effective Hamiltonian within this
ground-state subspace (Henley, Tchernyshyov et al.).

The effective Hamiltonian is exactly the same as
before, but with an additional constraint: on the “tetrahedra”, the total spin 
must be exactly 0, rather than 0, -4, or +4 as before.

Point: Real materials can have symmetries that generate 4-spin interactions 
without 2-spin interactions.

Frustrated magnetism on the checkerboard lattice
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Solution of a 2D Ising model

H = −K
∑
!

s1
!s2

!s3
!s4

!, s = ±1

Recall the following quick way to solve the one-dimensional Ising 
model in zero field: each bond can be chosen to be independently 
ferromagnetic or antiferromagnetic, so

F

N
=
−T log Z

N
= −T log(2 coshJ/T )
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Solution of a (trivial) 2D Ising model

H = −K
∑
!

s1
!s2

!s3
!s4

!, s = ±1

Recall the following quick way to solve the one-dimensional Ising model 
in zero field: each bond can be chosen to be independently 
ferromagnetic or antiferromagnetic, so

The above 2D model is exactly the same: each face can be chosen to 
be independently frustrated or unfrustrated, and the free energy per site 
is the same as for the 1D Ising model.

There is no phase transition at any temperature, so this 2D Ising 
model is like a generic 1D model (trivial “dimensional reduction”).

For the checkerboard lattice problem, we find that the constraint on 
tetrahedra generates a phase transition at finite temperature: 
dimensional reduction only appears in ground-state properties.

F

N
=
−T log Z

N
= −T log(2 coshJ/T )
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Quantum fluctuations in 2D

H = −K
∑
!

sz
1s

z
2s

z
3s

z
4 − h

∑
i

sx
i

The previous calculation shows that the ordered state is 
unstable to thermal fluctuations.

What about quantum fluctuations at T=0?  Does tunneling of the 
order parameter cause a quantum phase transition?

It turns out that this model bears a deep connection 
to the quantum Ising chain, a one-dimensional 
quantum model: among other similarities, it has 
essentially the same strong-weak coupling duality.
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Quantum fluctuations in 2D

H = −K
∑
!

sz
1s

z
2s

z
3s

z
4 − h

∑
i

sx
i

In one quantum or two classical dimensions, many 
nonperturbative methods apply, such as the exact coupling 
duality (Kramers-Wannier) of the 2D Ising model.

In terms of the quantum Ising model, this duality interchanges 
the K and h terms: hence the critical point must lie at K=h.

A related duality interchanges K and h
terms in our model:

Construction of dual operators:
(here j<i means a string in 1D or quadrant in 2D)

σx
i = sz

1s
z
2s

z
3s

z
4, σz

i =
∏
j<i

sx
j
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Quantum fluctuations in 2D

H = −K
∑
!

sz
1s

z
2s

z
3s

z
4 − h

∑
i

sx
i

Why does this model have a self-duality?
Heuristic argument: the classical analogue is a hybrid of 
“gauge” and “Ising” interactions in 3D.

Recall that the 3D Ising model is dual to an Ising gauge theory;
this hybrid theory is self-dual, and the duality interchanges the
Ising and gauge terms (cf. Savit et al., late 1980s).
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Critical theory and analogy to sliding Luttinger liquid

Since we have a continuous phase transition, it should be 
described by a continuum theory.  Our starting lattice model 
had the full symmetry of the square lattice.

Normally this symmetry is promoted to full rotational 
symmetry at the critical point, but here it is not.  Even 
though the original lattice problem has nonvanishing 2D 
correlators, the critical theory is (we believe) a set of 
decoupled 1D theories.  Couplings of these theories are 
“irrelevant” but dominate the 2D correlations.

A similar conclusion is reached for quantum Hall stripe phases by Lawler 
and Fradkin: an initially 2D, but anisotropic, hydrodynamic theory flows 
toward decoupled 1D theories (a “sliding Luttinger liquid” phase).

The U(1) limit of our Z2 theory underlies the “Bose metal” of Paramekanti, 
Balents, Fisher (2003), with two “sliding” symmetries.  We also found a 
phase diagram for self-dual theories with N-fold symmetry breaking.
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Conservation laws and connection to Kitaev model

H = −K
∑
!

sz
1s

z
2s

z
3s

z
4 − h

∑
i

sx
i

This model has an infinite, but not extensive, number of 
conserved quantities: the product of sx along any row, or any 
column, commutes with the Hamiltonian.
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Conservation laws and connection to Kitaev model

H = −K
∑
!

sz
1s

z
2s

z
3s

z
4 − h

∑
i

sx
i

This model has an infinite, but not extensive, number of 
conserved quantities: the product of sx along any row, or any 
column, commutes with the Hamiltonian.

Consider the “Kitaev model” for bond variables on the square 
lattice:

H = −K1

∑
!

σz
1σz

2σz
3σz

4 −K2

∑
+

σx
1σx

2σx
3σx

4 .

Now all the terms in the Hamiltonian commute: there is a 2D set of
conserved quantities, and the problem is fully solvable.
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Conclusions and references

References:
Classical superconducting arrays: JEM and D.-H. Lee, PRB 2004.
Quantum arrays and dimensional reduction:
C. Xu and JEM, PRL 2004 and cond-mat.

Several physical problems (including frustrated magnetism and 
geometric dependence of Josephson tunneling) naturally generate 
many-spin effective interactions.

Precise dimensional reduction from 2D to 1D in quantum models 
seems to result from having a 1D-infinite set of conserved quantities 
because of the many-spin interaction.  Similar models can be made in 
d>2 by increasing the number of spins in the interaction.

In our models, duality gives a result for how the classical phase is 
modified by quantum fluctuations.  An active area: what happens to 
other classical states, like the “photons” of the 3D pyrochlore?


