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Geometrically Frustrated Magnets

at High Fields:
exact low-temperature behavior

M. E. Zhitomirsky (DRFMC/CEA, Grenoble)

e Introduction
e Localized spin flips near saturation field
e Scattering states of localized spin flips

e Mapping to hard-dimer (sawtooth chain)
and to hard-hexagon (kagome AF) models

in collaboration with :

H. Tsunetsugu



GEOMETRICALLY FRUSTRATED LATTICES

e sawtooth chain
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e kagome lattice

e checkerboard lattice

e pyrochlore lattice




MOTIVATION

® pyrochlores, Gdy TioO7, GdaSny 07, garnet (hyper-kagome), Gd3Ga;02,

with small saturation fields H. ~ 1.5-10 T

® Bose condensation of infinite # of modes

® Magnetocaloric effect:

classical frustrated models
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LOCALIZED MAGNONS

e Exact one-magnon states in Ferromagnetic background

i) = STIFM) , S(ilH|j)e T = wi
i,j
e Kagome antiferromagnet: dispersionless branch
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e Sawtooth chain: dispersionless branch (J;=11)
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MAGNETIZATION CURVES BY

EXACT DIAGONALIZATION

Schulenburg et al

e sawtooth chain

Magnetization
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LOCALIZED MAGNONS: exact multiparticle states

e Low-temperature Mapping of Independent Localized Magnons to
a gas of Classical particles with an exclusion principle:

Nmax
Z =3 wn,N)e "H-H)T
n=>0
e Mapping is valid provided:

o Independent localized magnons |n)y,, are the lowest energy

states in every n-magnon subsector
H )it = n(H = 2)|n)im H[0)itm = —n|n)im
<7:[ZZ> > n(H —2) <7:[L> > <7:[L>boson =N

o No other lowest energy states or their contribution vanishes
as n — 00

o Scattering states are separated by a gap and T' < A



Scattering States in 2-magnon sector: sawtooth chain

e N/2 one-magnon states in the lowest branch w; = H — 2

<N/2)(év/2+1) two-magnon states, which include:

(N/2)(év/2_3) independent localized magnons and

% + % defect or scattering states:
two localized magnons are in the same or in adjacent valleys

e Variational basis for scattering states:

i) > |@ipisa) o |¥i) ~ |o7)
(Wilthier) = 1/35 . {i|ty) = (Wilbi1) = /5/49

e Variational ansatz: |k) =% B_ik”|¢i>

(k[#H]|k)
E = :EFM+2(H—2>+8k
(k|k) "
A:&‘k:o: ﬁ ~ (.54

e Improved ansatz:  |k) = &; e~ <|¢z> + C|Jz>)

A =044, for c=—0.24; numerically A = 0.42

e Weak dispersion de; ~ 0.1A, gap is determined by n.n. repulsion



Scattering States in 2-magnon sector: kagome AF

e NV/3 one-magnon states in the lowest branch w; = H — 3:

(N/3)(12V/3—7) ‘hard-hexagon’ states and NV + % scattering states

e Variational ansatz for scattering states:

Sy

|¢a2’> = |<)0i902'+5a> O = (170>7 (:I:%v )
1

(ailthns) = =2, (silns) = 55
|k> = Ze_ikm (a|¢12> + b|¢22> + C|¢3Z>) yields A~ (.24

e Additional low-energy states:

o Dispersive magnon w3, ~ H — 3+ %kz
renormalizes due to multiple scattering on localized magnons
and acquires a gap A3 ~ 12n/N

o Extra localized magnons:
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Superposition of localized magnons in adjacent valleys
their # is smaller than # of hard-hexagon states by 1/IV,
disappear completely for 3n/N > 0.1



Hard Classical dimers on a chain

e Partition function:

Z = > exp
{o}

_ L no__ 1 e_S/QT N A1 0
Z=TT", Tl(oo0)= (e_E/QT 0 ~1 0

e Thermodynamic potential:

—%ZO’i]H(l—UiO'j), 5:(H_HC)7 g, =0,1
U (i5)
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e Universal values at the saturation: H = H. (¢ = 0)

1
S/L = m( +2\/5) ~ 0.481212
1++/5
M/L = ~ 0.723607
/ 25

e Correlation length: &1 =In|\ /A =¢/T +2In )\

ExT/(H-H), (e>T), &I (le]>T),



Sawtooth chain: comparison to numerical results

exact diagonalization data by A. Honecker for N = 24




Hard Hexagons on a Triangular Lattice Baxter '81
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e Thermodynamic functions:
N/3

Z=73 2wn,N), z=e HHIT F—_Thg, k=2"
n=0

e At the saturation field, H = H. (z = 1):
S =0.33324, p=0.16243 = Skag = 5hex = 0.11108
e Phase transition at H = H*:
2. = (11+5V/5) = 11.0902 = H*(T) = H,~TIn z, = 3—2.406T

pe=1(5—5) = 02764 = Myny = M — £p. = 0.4079

critical exponents of 2D three-state Potts model:

1 1 _5
=3 f=5v=3

e Magnetocaloric Effect:
H—-H,
H;,— H.

S=[flH-H)/T| —= T=T,

fast temperature drop as H — H,!



Baxter's solution for the thermodynamic potential

e High fields: H > H*, 0 <2<z, —-1<2<0

B H) - 1 - a0 — ),

Gla) = T[1-a" 1 =", Q)= I (1-a"),

n=1

_ H3(2)Q*(z°) ﬁ (1 — 2574)(1 — 28=3)2(1 — 26n-2)
GQ(@ n=1 (1 — xbn— 5)(1 26n— 1)( x6”)2

o Low fields: H < H*, z,. < z< o0, O<z<1

G () Q(z)Q(a”)

T T ey
x_1/3G3(x)Q2(x5) ﬁ (1 23n— 2)(1_$3n—1)
H(z) - (1 — adn)2
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Thermodynamics of Kagome AF from the exact solution
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When There is No Exact Solution...

e spin-1/2 Heisenberg AF on a checkerboard lattice is mapped to a
hard-square model: lattice gas on a square lattice with nearest and
next-nearest neighbor exclusion

e Antiferromagnetic Ising models at the transition into a saturated
state. Single spin flips one neighboring sites loose energy AE ~ J.
At low temperatures T' < .J nearest-neighbor exclusion.

Frustrated quantum Statistical model of o o
. . : sing mode
Heisenberg model |==| classical particles with| <= & _
_ . o near saturation
near saturation an exclusion principle

MC simulations on equivalent Ising model yield:
Sehecker = 0.162 > Skag at H = H.

e Pyrochlore lattice—an open problem: localized magnons become
linear dependent




