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We present a renormalization group (RG) procedure which works naturally on a wide class of inter-
acting one-dimension models based on perturbed (possibly strongly) continuum conformal and integrable
models. This procedure integrates Wilson’s numerical renormalization group with Zamolodchikov’s
truncated conformal spectrum approach. The key to the method is that such theories provide a set of
completely understood eigenstates for which matrix elements can be exactly computed. In this procedure
the RG flow of physical observables can be studied both numerically and analytically. To demonstrate the
approach, we study the spectrum of a pair of coupled quantum Ising chains and correlation functions in a
single quantum Ising chain in the presence of a magnetic field.
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The numerical renormalization group (NRG), as devel-
oped by Wilson [1], is a tremendously successful technique
for the study of generic quantum impurity problems, sys-
tems where interactions are confined to a single point. But
the NRG as such is not directly generalizable to systems
where interactions are present in the bulk. The natural
generalization of the NRG in real space treats boundary
conditions between renormalization group (RG) blocks
inadequately, leading to qualitatively inaccurate results.
To overcome this difficulty, White developed the density
matrix renormalization group [2]. This tool is now ubiq-
uitous in the study of low dimensional strongly correlated
lattice models and can access both static and dynamic
quantities [3].

In this Letter we offer a distinct generalization realizing
a renormalization group procedure for a wide range of
strongly interacting continuum one-dimensional systems.
It can treat any model which is representable as a confor-
mal or integrable field theory (CFT/IFT), with Hamiltonian
H0, plus a relevant [4] perturbation (of arbitrary strength)
Hpert. Beyond this there is no real constraint onH0 orHpert.
In particular, the full theory, H0 �Hpert, need not be
integrable or conformal. Thus the technique can handle a
standard array of models of perturbed Luttinger liquids or
Mott insulators. It is also capable of treating disordered
systems, either by envisioning Hpert as a random field or,
equally well, considering a nonunitary supersymmetric
CFT, H0 arising from disorder averaging a system with
quenched disorder [5]. This technique also allows the study
of coupled CFT/IFTs, allowing the study of systems be-
tween one and two dimensions. In all cases, the low energy
spectrum and correlation functions of the model are
computable.

Our starting point is the truncated spectrum approach
(TSA) pioneered by Zamolodchikov. The TSA was devel-
oped to treat perturbations of simple conformal field theo-
ries. While straightforward in conception, it has an
advantage over other numerical techniques in that it ana-

lytically embeds strongly correlated physics at the start,
dramatically lessening the computational burden. In one of
the TSA’s first applications, Zamolodchikov studied a
critical Ising chain in a magnetic field [6], a continuum
version of the lattice model
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where �ai are the standard Pauli matrices and i indexes the
sites of the lattice. The continuum model, itself integrable,
has a complicated spectrum of eight fundamental excita-
tions. The TSAwas able to produce the gaps of the first five
excitations within 2% of the analytic, infinite volume
values by diagonalizing a mere 39� 39 matrix. To see
how remarkable this is, consider that in a computationally
equivalent exact diagonalization of the lattice model, one
would be limited to studying a five site chain.

The TSA begins by taking the model to be studied, H �
H0 �Hpert, and placing it on a finite ring of circumference
R. Doing so makes the spectrum discrete (see Fig. 1). We
nonetheless expect to be able to obtain infinite volume
results provided we work in a regime where R�� 1
with � a characteristic energy scale of the system. In the
discrete system, the spectrum can then be ordered in en-
ergy, j1i; j2i; . . . . Nonperturbative information is input in
the next step of the TSA where the matrix elements
Hpertij � hijHpertjji are computed exactly. It is important
to stress this is always a practical possibility. If H0 is a

 

R

E

E
E
E
E

E

1

2

3

4

5 ~1/R

FIG. 1. A schematic of the finite sized system, both in real
space and in terms of energy levels, analyzed in the TSA
procedure.
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CFT, the attendant Virasoro algebra (or, equally good,
some more involved algebraic structure such as a current
or a W algebra) permits the computation of such matrix
elements straightforwardly. If H0 is instead an IFT, such
matrix elements are available through the form-factor
bootstrap program [7]. In an IFT, the matrix elements
which we will want to focus on involve states jii with
few excitations and, as such, are readily computable.

With the matrix elements in hand, one can then express
the full Hamiltonian as a matrix. The penultimate step in
the procedure is to truncate the spectrum at some energy
Etrunc, making the matrix finite. This matrix is then nu-
merically diagonalized from which the spectrum and cor-
relations functions can be extracted. When H0 represents a
theory with a relatively simple set of eigenstates, this
procedure, even with a crude truncation of states, works
remarkably well in extracting the spectrum. However,
when the starting point Hamiltonian H0 is more compli-
cated [say a CFT based on a SU�2�k current algebra such as
would be encountered in the study of spin chains], or one is
interested in computing correlation functions in the full
theory H0 �Hpert, the simple truncation scheme ceases to
produce accurate results at reasonable numerical cost. For
example, errors in an excitation gap � introduced by the
truncation of states behave as power laws, ��� E��trunc

(�� 1). Thus increasing Ec does not dramatically reduce
�� while at the same time greatly increasing the cost of the
exact diagonalization routine which should scale similarly
to the partition of integers, i.e., as e�

��������
Etrunc

p

=Etrunc. It is the
aim of this Letter to outline an RG technique offering a
dramatic improvement on this truncation scheme.

Our framework hews closely to the original Wilsonian
conception of the NRG. In developing the NRG for the
Kondo model, Wilson transformed the original Kondo
Hamiltonian using the ‘‘Kondo basis’’ to a lattice model
of an impurity situated at the end of a infinite half line with
sites far from the end characterized by rapidly diminishing
matrix elements. We, in a sense, start in this position. The
ordering in energy of the states provided by H0 is in direct
analogy to the half line on which the impurity lives in
Wilson’s Kondo work. The next step in Wilson’s NRG is an
iterative numerical procedure by which at each step a finite
lattice is expanded by one site, the model diagonalized, and
high energy eigenstates thrown away. It is this iterative
procedure that we mimic.

Let us denote the initial basis offered by H0 as fjiig1i�1.
We begin by keeping a certain number, sayN ��N, of the
lowest energy states,fjiigN��N

i�1 (in blue or dark gray in
Fig. 2). We diagonalize the problem, so extracting an initial
spectrum and set of eigenvectors, fj~iigN��N

i�1 (in red or light
gray in Fig. 2). We then toss away a certain number, �N, of
the eigenvectors corresponding to the highest energy, i.e.,
fj~iigN��N

i�N�1. A new basis is then formed, consisting of the
remaining eigenvectors together with the first �N states of
fjiig1i�1 that we had previously ignored, i.e., fj~iigNi�1 [

fjiigN�2�N
i�N��N�1, and the procedure is repeated. We present

the technique schematically in Fig. 2. Convergence of the
procedure in the Kondo problem is promoted by the small
matrix elements involving sites far from the impurity.
While matrix elements in the procedure just described
grow progressively smaller under the NRG (scaling as
1=Etrunc), here numerical convergence is not necessarily
the goal. Rather we aim to merely bring the quantity into a
regime where its flow is governed by a simple flow
equation.

The algorithm just described implements a Wilsonian
RG in reverse. It does so at all loop orders and so the RG
flow it describes is exact. As the flow proceeds, however, it
evolves closer and closer to a flow described by a one-loop
equation. Analytically, the equation is nearly trivial as it is
given solely in terms of the anomalous dimension �Q of
the flowing quantity Q (whether it be an energy eigenvalue
or a matrix element). More specifically,
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where �Q � Q�Etrunc� �Q�Etrunc � 1� describes the de-
viation of the quantity as a function of the truncation
energy from its ‘‘true’’ value [i.e., the value where the
cutoff in energy is taken to infinity]. The function g��Q�
can be determined exactly using high energy perturbation
theory, well-controlled provided Hpert is relevant. For ex-
ample, if Q is some energy eigenvalue, then g��Q� �
�Q � 1.

The virtue of Eq. (2) is that it allows us to run the RG in
two steps. We first implement the NRG as described above
until we reach a truncation energy placing us safely in the
one-loop regime. We then continue the RG by merely
integrating the above equation allowing us to fully elimi-
nate the effects of truncation.

We now consider two examples using this RG proce-
dure, one where we compute the spectrum of a model and
one where we analyze correlation functions. Both ex-
amples are chosen so that a straight application of the
TSA leads to poor results.

Spectrum.—In the first example, we consider a pair of
quantum critical Ising chains coupled together:

 H0 � HIsing1
0 �HIsing2

0 ; Hpert � ��
Z
dx�z1�

z
2: (3)
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FIG. 2 (color online). An outline of the NRG algorithm.
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This model is known to be integrable and to have a spec-
trum equivalent to the sine-Gordon model at �2 � � [8],
that is, a spectrum with a pair of solitons with gap �s1 �
�s2, together with a set of six bound states with gaps �k �
2�s sin��k=14�, k � 1; . . . ; 6. By comparing conformal
perturbation theory with a thermodynamic Bethe ansatz
analysis, �s1;2 can be expressed in terms of the coupling
constant �: �s1;2 � 11:220 592 0 ~� with ~� � �4=7=�2��3=7

[9].
The underlying finite volume Hilbert space of H0 is

considerably more complicated than that of single Ising
chain. In a single chain there are four potential sectors of
the Hilbert space [6]: a sector I, composed of even numbers
of half-integer fermionic modes acting over a unique vac-
uum jIi; a sector F, composed of odd numbers of half-
integer modes over jIi; and finally two sectors �=�, com-
posed of even numbers of both right and left moving
integer fermionic modes over degenerate vacuua j�i=j�i.
The sectors � and � are connected by applying a product
of an odd number of even mode fermionic operators. Under
periodic boundary conditions, however, the Hilbert space
of a single chain is reduced to two sectors, I and �. In the
two-chain case, this is no longer true. Not only do we have
sectors of the form I 	 I, I 	 �, � 	 I, and � 	 � (such
tensor products arising naturally from considering two
chains), but F 	 F, F 	�, � 	 F, and � 	�. Unlike a
single chain, all possible sectors are consistent with peri-
odic boundary conditions. The Hilbert space that results is
thus much larger and applying the TSA with a simple
truncation scheme leads to poor results for the spectrum.
Computing the spectrum of this model is thus an ideal
testing ground for our proposed RG procedure.

In Fig. 3 we outline the procedure by which we ex-
tract the values of the spectrum of the two coupled Ising
chains focusing for specificity on the second bound state
�2 in the spectrum. We first show the results of a straight
TSA analysis (squares) as a function of increasing trun-
cation energies (given in units of 1=R). While the gap
�2 is converging towards its infinite volume value

9:736 864 8 . . . ~�, it is doing so only slowly and at expo-
nentially increasing numerical cost. We have performed
the straight TSA analysis up to level 15 (i.e., keeping states
with energies less than 15=R) where the Hilbert space
contains 
3500 states. At this point, the TSA produces a
result deviating by 
20% from the exact value. We also
plot the value of �2 as given by the NRG algorithm as it
iterates through states of ever higher energy. Here we have
run the algorithm so as to take into account states up to
level 25 (in total 
150 000=sector). We see, reassuringly,
that where the TSA results exists, the NRG algorithm
produces matching results (at a fraction of the numerical
cost). The NRG algorithm ends up producing a value of �2

with a 5% error. Finally, we plot the result of fitting Eq. (2)
to the NRG results between level 20 and 25 (where we
believe a one-loop RG equation describes the NRG flow).
Extrapolating the fit to Etrunc � 1 gives �2 � 9:70 ~�, a
value deviating from the exact result by 0.5%.

In Table I we present the results of our RG analysis on
the complete spectrum of the two coupled chains. In the
first column we provide the exact value of spectrum as
determined by integrability and the thermodynamic Bethe
ansatz analysis of Ref. [9]. In the second column, we give
the values of the spectrum at two different system sizes
(R � 4=5 ~��1) computed using a straight TSA analysis
truncating at level 10 (i.e., keeping 
 600 states in each
of the relevant sectors). We see that the disagreement with
the exact result ranges up to 20%. In the third column, we
give the results coming from applying the NRG algorithm
(again iterating until we have reached level 25). We see a
marked improvement over the TSA analysis, but still we
obtain results with errors ranging up to 5%. In the final
column, we give the results for the spectrum arrived at by
fitting the one-loop RG equation [Eq. (2)] to the NRG data.
We see that our errors are now less than 1%.

Correlation functions.—We now turn to the computation
of correlation functions using the above described RG
methodology. For simplicity we consider only T � 0 re-
sponse functions although a generalization to finite tem-
perature multipoint functions is readily realizable. At
zero temperature, the imaginary piece of a retarded corre-
lation function, Gret�x; t� � hO�x; t�O�0�iret, has a spectral
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FIG. 3 (color online). Plots showing the behavior of �2 as a
function of the truncation energy Etrunc (for R � 5 ~��1).

TABLE I. The excitation energies for two coupled Ising chains
at values of R � 4=5 ~��1 [in units of ~� � �4=7=�2��3=7].

Exc. Exact TSA (10) NRG RG Improved

�s1 11.2206 11:92=12:67 11:32=11:54 11:17�2�=11:15�5�
�s2 11.2206 11:92=12:66 11:32=11:54 11:17�2�=11:16�6�
�1 4.9936 5:29=5:61 5:03=5:12 4:97�1�=4:97�2�
�2 9.7369 10:69=11:55 9:89=10:24 9:70�3�=9:7�1�
�3 13.9918 15:58=16:65 14:33=14:84 14:02�5�=14:20�5�
�4 17.5452 19:672=20:923 18:69=18:03 17:6�1�=17:7�1�
�5 20.2188 23:64=24:64 20:80=21:62 20:2�2�=20:5�2�
�6 21.8785 23:65=25:28 22:39=23:08 21:8�1�=21:8�2�
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decomposition, SOO�x;!� � �
1
� ImGret�x;! > 0� equal

to [10]

 SOO�x;!� �
X
n;sn

eiPsn xjh0jO�0; 0�jn; snij
2��!� Esn�; (4)

where jn; sni is an eigenstate of the system with energy-
momentum Esn=Psn built out of n fundamental single
particle excitations carrying internal quantum numbers
sn. Thus the computation of any response function is
equivalent to the computation of a number of matrix ele-
ments of the form h0jO�x; 0�jn; sni. Ostensibly to compute
the response function fully one would need to compute an
infinite number of such matrix elements. In practice if one
is interested in the response function at low energies only a
small finite number of such matrix elements need be com-
puted [10]. We will illustrate the computation under the RG
of one such nontrivial matrix element for a critical Ising
chain in a magnetic field [i.e., Eq. (1)]. While the spectrum
of this theory rapidly converges upon the increase of Etrunc,
the matrix elements are less well behaved. And unlike the
two-chain case, analytical results are available for com-
parison [11]. Thus this computation is a good test of our
RG methodology.

We specifically compute the two excitation contribution
f2�!� � h0j��0�jA1�p�A1��p�j0i with p � �!2 ��2

1I�,
to the spin-spin correlator S���p � 0; ! > 0�. (Here �1I
is the gap of the lowest lying single particle excitation A1 in
an Ising chain in a magnetic field.) This contribution takes
the form

 �S���!� � ��1!�!2 � 4�2
1I�

1=2��!� 2�1I�jf2�!�j2:

(5)

We are able to compute the necessary infinite volume
matrix element over a continuous range of energies by

studying a single matrix element in finite volume where
the spectrum is discrete. We do so by continuously varying
the system size R. Under such variations, the energy ! �
2�p2 �m2

1�
1=2 of the state, jA1�p�A1��p�i, changes con-

tinuously due to the quantization condition of the momen-
tum p [i.e., p � 2�n=R� ��p;�p� where ��p;�p� is a
two-body scattering phase].

In Fig. 4 by varying R we parametrically plot the results
of our computations of f2�p� vs its exact value [11]. A
straight application of the TSA (with a level 10 truncation)
produces acceptable results at higher energies but does
poorly at energies around threshold, 2�1. At larger values
of R (and so smaller energies), the TSA breaks down. The
TSA curve in this region is then double valued. Computing
the same matrix element with the NRG algorithm leads to a
considerable improvement but at the lowest energies a
deviation from the exact result remains (see inset to
Fig. 4). RG improving the computation of f2�p� largely
removes this discrepancy even at energies next to thresh-
old. [In applying Eq. (2) to Q � f2�p�, perturbation theory
yields, g��f2

� � 2�1� 1=8� where 1=8 is the anomalous
dimension of the spin operator �.]

In conclusion, we have presented an RG scheme by
which a large number of one-dimensional continuum mod-
els can be studied with quantitative accuracy. With this
methodology, both the spectrum and spectral functions of a
model can be determined.
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