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We propose a model for the intrinsic quantum criticality of �-YbAlB4, in which a vortex in momentum

space gives rise to a new type of Fermi surface singularity. The unquenched angular momentum of the

jJ ¼ 7=2; mJ ¼ �5=2i Yb 4f states generates a momentum-space line defect in the hybridization

between 4f and conduction electrons, leading to a quasi-two-dimensional Fermi surface with a k4?
dispersion and a singular density of states proportional to E�1=2. We discuss the implications of this line

node in momentum space for our current understanding of quantum criticality and its interplay with

topology.
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Since their discovery, heavy fermion materials have
provided a wealth of insights into correlated electron phys-
ics. These materials contain a matrix of localized magnetic
moments formed from f electrons immersed in a host
metal; at low temperatures the spin-quenching entangle-
ment of the f moments with the conduction electrons gives
rise to a diversity of ground states, including anisotropic
superconductors, Kondo insulators, and quasiparticles with
effective masses hundreds of times that of bare electrons
[1,2]. An important class of heavy fermion metals exhibits
the phenomenon of quantum criticality, whereby upon
tuning via pressure, doping, or magnetic field through a
zero temperature second-order quantum phase transition,
they develop non-Fermi liquid behavior and predisposition
to superconductivity [3–5].

The discovery [6,7] of an intrinsically quantum critical
heavy fermionmetal,�-YbAlB4, has recently attracted great
interest. �-YbAlB4 exhibits non-Fermi liquid behavior

without tuning, with a T3=2 temperature dependence of the

resistivity, and a T�1=2 divergence in the magnetic suscep-
tibility; a magnetic field induces an immediate crossover to
a Fermi liquid (FL) with a T2 resistivity and a susceptibility

which diverges as B�1=2. T=B scaling in the free energy
has been observed over 4 decades of field, pinpointing
the critical magnetic field within �0:1 mT of zero and
demonstrating that the field-induced Fermi temperature is
the Zeeman energy [7].

In this Letter, we show that the properties of this material
can be understood in terms of a nodal hybridization model.
In essence�-YbAlB4 resembles a Kondo insulator, but one
in which the hybridization gap between the conduction
and f electrons vanishes along a line in momentum space,
producing a critical semimetal with a singular density of
states.

There are three known examples of such nodal materials:
CeNiSn, CeRhSb, andCeCu4Sn, in which the hybridization

appears to vanish linearly along a line in momentum space,
closing the gap to form a heavy fermion semimetal [8]. In
�-YbAlB4, the unusual local sevenfold symmetry of the
ytterbium (Yb) site surrounded by boron (B) atoms protects
a ‘‘high-spin’’ jJ ¼ 7=2; mJ ¼ �5=2i state, in which the f
electrons carry a large unquenched orbital angular momen-
tum. The j5=2i state carries at least two units of unquenched
orbital momentum orientated along the c axis, yet plane
waves carry no orbital angular momentum in the direction
of motion, so the f state is protected from hybridization
with conduction electrons traveling along the c axis. This
causes the hybridization to develop a singular structure,
VðkÞ � ðkx � ikyÞ2 vanishing as the square of the trans-

verse momentum k? with a double vorticity associated
with the two unquenched units of orbital angular momen-
tum. The electrons and holes at the band edge then form an
emergent two-dimensional electron gas with a dispersion
proportional to the square of the hybridization,

EðkÞ � jVðkÞj2 � ðk?Þ4; (1)

giving rise to a quartic dispersion with a divergent density

of statesNðEÞ / E�1=2. It is the field-induced doping of this
two-dimensional heavy band that accounts for the unusual
field-tuned behavior in �-YbAlB4.
In �-YbAlB4, the Yb atoms form a honeycomb lattice,

sandwiched between layers of B atoms, with the Yb atoms
sitting between a pair of seven-member B rings, giving
rise to a local environment with local sevenfold symmetry
[6], as shown in Fig. 1. We shall assume that the Yb ions
are in a nominal Yb3þ, 4f13 configuration, with total
angular momentum J ¼ 7=2. Photoemission spectroscopy
indicates a microscopic valence of 2.75 [9] due to moment-
conserving valence fluctuations Yb3þ $ Yb2þ þ e�.
J ¼ 7=2 crystal field operators with sevenfold and

time-reversal symmetries conserve total Jz, splitting the
J ¼ 7=2 Yb multiplet into four Kramers doublets, each
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with definite jmJj. The Curie constant and the Ising
anisotropy of the magnetic susceptibility of �-YbAlB4

are consistent with a pure Yb ground state doublet
jJ ¼ 7=2; mJ ¼ �5=2i [10], a configuration that exhibits
maximal hybridization with the sevenfold boron rings.
This Ising ground state is also consistent with the large
anisotropic g factor observed in electron spin resonance
measurements on �-YbAlB4 [11].

We model the low-energy physics of �-YbAlB4 as a
layered Anderson lattice [10],

H ¼ X
n;k;�

�knc
y
kn�ckn� þX

j

HmðjÞ; (2)

where the first term describes a tight-binding boron con-
duction electron band with index n, and

HmðjÞ ¼ V0ðcyj�X0�ðjÞ þ H:c:Þ þ EfX��ðjÞ; (3)

describes the hybridization with the Yb ion at site j
and the energy level Ef of the f electrons. Here, X0� ¼
j4f14ih4f13; �j is a Hubbard operator linking the 4f13,
mJ � � ¼ �5=2 state of the Yb3þ ion to the completely
filled shell Yb2þ state j4f14i. The operator

cyj� ¼ X
p2ð1;14Þ;�

cy�ðRjpÞY��ðrpÞ; (4)

creates a conduction electron in a Wannier state delocal-
ized across the sevenfold boron rings directly above
and below the Yb ion at site j, with local f symmetry
and Jz¼�¼�5=2. The Rjp ¼ Rj þ rp are the locations

of the 14 boron sites around the Yb site j (see Fig. 1). The
hybridization matrix,

Y��ðrÞ ¼ C7=2
��Y3

���ðrÞ ¼ 1ffiffiffi
7

p
ffiffiffi
6

p
Y3
2 Y3

3

Y3
�3

ffiffiffi
6

p
Y3
�2

 !
ðr̂Þ; (5)

where the C7=2
�� ¼ h3�� �; �2 j 72 ; �i are Clebsch-Gordan

coefficients for the Yb3þ, � ¼ �5=2 configurations.
We employ a slave boson decomposition of the Hubbard

operators, X0�ðjÞ ¼ byj fj�, where bj and fj� are a slave

boson and an Abrikosov pseudofermion, respectively; in a
mean-field approximation,

HmðjÞ ¼ V�
0 ½cyj�fj� þ H:c:� þ ~Eff

y
j�fj� þ �0ðr2 � 1Þ;

(6)

where V�
0 is the quasiparticle hybridization, renormalized

by the mean-field amplitude of the slave boson field,
r ¼ jhbij taken to be constant at each site. �0 imposes the
mean-field constraint hnfi þ r2 ¼ 1, while the renormal-

ized position of the f-level ~Ef ¼ �0 þ Ef.

Next, we transform to momentum space and evaluate the
form factor of the sevenfold symmetric Yb-B cluster. To
obtain a simplified model, let us assume a single band of
dispersion �k hybridizing with the Yb atom. Rewriting
the creation operator at a given boron site in terms of a

plane-wave state cy�ðRjpÞ ¼ ð4N Þ�1=2
P

kc
y
k�e

�ik�Rjp ,

and fj� ¼ N �1=2
P

kfk�e
ik�Rj , where N is the number

of Yb sites, Eq. (4) becomes

cyj� ¼ ð4N Þ�1=2
X
k�

cyk����ðkÞe�ik�Rj ;

where the form factor of the Yb-B cluster

½�ðkÞ��� ¼ X
p¼1;14

Y��ðrpÞe�ik�rp : (7)

The mean-field Hamiltonian (6) can then be written in
terms of the plane-wave ck� and fk� operators as

Heff ¼
X
k

ðcyk; fykÞ
�kI VðkÞ

VyðkÞ ~EfI

 !
ck

fk

 !
; (8)

where all details of the hybridization are hidden in the
matrix ½VðkÞ� ¼ 1

2V
�
0�ðkÞ. Now in polar coordinates,

Yðr̂Þ ¼
ffiffiffiffiffiffiffiffiffi
5

64�

s
s2�

6c�e
2i	 �s�e

3i	

s�e
�3i	 6c�e

�2i	

 !
; (9)

where we denote ðcos�; sin�Þ � ðc�; s�Þ. The important
point is that the hybridization vanishes as sin2� along the
c axis. Now the effect of Fourier transforming in Eq. (7)
is to replace the real-space argument by the momentum
YðrÞ ! YðkÞ. To obtain an analytic expression, we ap-
proximate the discrete sum over the positions in the seven-

fold B ring by a continuous integral:
P

p ! 7
P

�
R d	

2� . We

find that VðkÞ is proportional to a unitary matrix,

FIG. 1 (color online). Showing the sevenfold symmetric envi-
ronment of the Yb3þ ions (large spheres) in �-YbAlB4, sand-
wiched between two heptagonal rings of B atoms (small spheres).
The blue (light gray) surface is the orbital distribution in the
mj ¼ �5=2 state.
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VðkÞ ¼ i ~V0

�k �k

���
k ��

k

 !
; (10)

where ~V0 ¼ 7V�
0

16

ffiffiffi
5
�

q
and

�k ¼ 6 sinðkza=2Þðk̂x þ ik̂yÞ2J2ðk?RÞ;
�k ¼ cosðkza=2Þðk̂x þ ik̂yÞ3J3ðk?RÞ;

(11)

where Jn are Bessel functions of order n, R is the radius of
the sevenfold rings, and a is the distance between boron
layers. Since JnðxÞ / xn at small x, near the c axis, the
hybridization vanishes as k2?, with a diagonal form

VðkÞ � ðkx þ ikyÞ2 0

0 ðkx � ikyÞ2
 !

:

As one proceeds around the c axis, the phase of the
hybridization advances by 4�, forming a double vortex in
the hybridization along the c axis. This vorticity is a
consequence of angular momentum conservation about
the c axis: plane waves jk�i traveling along the c axis
carry a spin angular momentum of� 1

2 along the c axis, and

because the f states are in an mJ ¼ � 5
2 , angular momen-

tum conservation prevents the mixing of conduction and f
electron waves traveling along the c axis.

We can diagonalize the mean-field Hamiltonian, to ob-
tain a hybridized dispersion

E�
k ¼ 1

2ð�k þ ~EfÞ �
h
1
4ð�k � ~EfÞ2 þ jVðkÞj2

i
1=2

; (12)

where jVðkÞj2 ¼ ~V2
0½j�kj2 þ j�kj2�. Figure 2 illustrates

the hybridized band structure. Near the c axis, the squared
hybridization vanishes as VðkÞ2 ¼ AðkzÞk4?. The disper-

sion in the vicinity of the c axis is then given by

Eðk?; kzÞ ¼ ~Ef þ VðkÞ2
��ðkzÞ �

~Ef þ 
ðkzÞk4?;

where 
ðkzÞ ¼ AðkzÞ
��ðkzÞ and we have assumed that j�ðkzÞj is

large compared to jVðkÞj. In other words, the system
develops an emergent two-dimensional Fermi surface,
with a k4? dispersion. A hole band is formed in the region

where �ðkzÞ> 0, while an electron band is formed in the
region where �ðkzÞ< 0. In the case where �ðkzÞ changes
sign along the c axis, a two-dimensional electron and hole
band is formed above and below the f level.
To explain the intrinsic criticality of �-YbAlB4 we

conjecture that the f level is pinned to zero energy
~Ef ¼ 0. A heuristic argument for this assumption is to

regard �-YbAlB4 as a Kondo insulator in which the nodal
hybridization closes the gap along the c axis, pinching the
f level in the gap at precisely zero energy. At the current
stage of understanding, this assumption is purely phenome-
nological, a point we return to later.
If ~Ef ¼ 0, the density of states for this dispersing system

is then given by N�ðEÞ ¼ P
�N��ðEÞ�ð�EÞ, where

N��ðEÞ ¼ 2
Z

k?
dk?
dE�

dkz
ð2�Þ2 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
jEjT�

0

q (13)

and 1ffiffiffiffiffi
T�
0

p ¼ 1
8�2

R dkzffiffiffiffiffiffiffiffiffiffi
j
ðkzÞj

p �½	�ðkzÞ� determines the charac-

teristic scales T�
0 for the electron (þ) and hole (�) branch

of the dispersion. Power law scaling will extend out to
characteristic Kondo temperature TK of the system, so that
the total weight x of f electrons contained within the

divergent peak is 2x ¼ RTK�TK
N�ðEÞ � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TK=T0

p
,

giving T0 ¼ 4TK=x
2.

If the f level is pinned to zero energy, then at low
temperatures a Fermi line of zero energy excitations forms
along the c axis. In a field, the Zeeman-splitting of the f
level induces a singular polarization of nodal electron
and hole bands, broadening the Fermi line into a distinct
tubular Fermi surface. When a field is introduced, a spin-
polarized Fermi surface grows around the line zero in the
hybridization, giving rise to a density of states of order

N�½g2�BB� � B�1=2, leading to a Pauli susceptibility that

diverges as �� B�1=2. We call this field-induced Fermi
surface transition a ‘‘vortex transition.’’ Vortex transitions
are reminiscent of a Lifshitz transition, but whereas
Lifshitz transitions are point defects in momentum space
[12,13], the vortex transition is a line defect.
We can model the singular thermodynamics of the sys-

tem with the free energy

F½B; T� ¼ �T
X

�¼�5=2

Z 1

�1
dENðEÞ ln½1þ e��ðE�g�BB�Þ�

¼ T3=2�

�
g�BB

T

�
; (14)

FIG. 2 (color online). (a) Showing dispersion around the c
axis, with an electron pocket at the � point and a hole pocket
at the Z point. (b) Magnetic field fills the k4? band.
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where

�ðyÞ ¼ � 1ffiffiffiffiffi
T0

p
Z 1

0

dxffiffiffiffiffiffijxjp X
�¼�5=2

ln½1þ e�x�y��

and T�1=2
0 ¼ ð1=2ÞP�T

�1=2
� . Figure 3 compares the ex-

perimental scaling curve [7] with that predicted by our
simple model. However, while a qualitatively good fit to
the observations is obtained using a gyromagnetic ratio
consistent with the single ion properties of Yb in
�-YbAlB4, the characteristic energy scale required to fit
the experimental results is T0 � 6:5 eV, far greater than the
characteristic Kondo temperature (� 200 K) of this system
[7]. Using our relationship T0 ¼ 4TK=x

2, we can under-
stand this scale by assuming that about x� 0:1 of the f
spectral weight is contained within the vortex metal con-
tribution to the density of states [14].

We now turn to discuss some of the assumptions behind
our model. One issue is whether the plane-wave descrip-
tion of the vortex metal survives inclusion of band-
structure effects. In this situation, angular momentum is
only conserved modulo n@, where n is the order of the
symmetry group of the Yb environment, requiring n 
 5 to
avoid any admixture of jmJj ¼ 3=2, 1=2 states into the
perfect �5=2 doublet. In a model of �-YbAlB4, using
tight-binding coupling within the B planes and perfect
heptagonal Yb rings, the nodal structure does indeed sur-
vive, as shown in Fig. 4. However more work is required to
understand whether the nodes persist in a more realistic
model of �-YbAlB4. Another key assumption is that the
pinching of the hybridization gap by the node perfectly
pins the f level to the Fermi surface. Ultimately, this must
arise from Coulomb screening, an effect that also needs
inclusion in future work.

Support for our model is provided by the locally isostruc-
tural polymorph �-YbAlB4, which has a comparable char-
acteristic ‘‘Kondo’’ scale TK � 200 K [9] to the beta phase,
but develops a FL ground state [15]. Recent experiments
indicate that �-YbAlB4 develops a two-dimensional Fermi
liquid at fieldsB> 3 T [16], suggesting it is a phase in which
the f level has become detached from the Fermi energy.

More direct confirmation of our nodal hybridization model
of �-YbAlB4 might be obtained from de Haas–van Alphen
measurements. Using Onsager’s arguments, the free energy
of an extremal orbit of area AFS in the field-doped FL will be

a periodic function of @AFS=ð2�eBÞ, and since AFS /
ffiffiffiffi
B

p
,

unlike conventional metals, we predict the low-field quantum

oscillations will be periodic in 1=
ffiffiffiffi
B

p
rather than 1=B.

Finally, we note that vortex structure in the hybridization
suggests a kind of topological line defect in momentum
space. In Kondo insulators, the hybridization vanishes at
the high symmetry points forming point defects [12], corre-
sponding to a homotopy �2ðH Þ ¼ Z2. Vortices in the
hybridization suggest a further one-dimensional homotopy,
�1ðH Þ ¼ Z. This is an interesting direction for future
work.
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to an almost 2D surface in the kx-ky plane. For clarity, the first
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