
Constructing the Generalized Gibbs Ensemble after a Quantum Quench
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Using a numerical renormalization group based on exploiting an underlying exactly solvable non-

relativistic theory, we study the out-of-equilibrium dynamics of a 1D Bose gas (as described by the Lieb-

Liniger model) released from a parabolic trap. Our method allows us to track the postquench dynamics of

the gas all the way to infinite time. We also exhibit a general construction, applicable to all integrable

models, of the thermodynamic ensemble that has been suggested to govern this dynamics, the generalized

Gibbs ensemble. We compare the predictions of equilibration from this ensemble against the long time

dynamics observed using our method.
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Understanding nonequilibrium quantum quench behav-
ior in low-dimensional systems is a difficult theoretical
challenge. Because one is initializing the system in a state
that is not an eigenstate, this behavior is determined not
merely by the system’s ground state (or a small number of
excited states), but rather by some coherent sum of a large
number of eigenstates. If one wants to explore the emer-
gence of a resulting steady state, the time evolution of this
coherent sum must then be tracked over long periods of
time. This problem confronts theorists who wish to under-
stand dynamics in perturbed quantum gases [1,2], ultrafast
phenomena in superconductors [3], and questions of ther-
malization in integrable systems [4].

This last set of questions arises because of the surprising
experimental finding that a perturbed one-dimensional
Bose gas retains memory of its initial nonequilibrium state
over long periods of time [1] and does not appear to relax to
a state of thermodynamic equilibrium. To understand this,
it was proposed [4] that equilibriation does occur but not as
described by a grand canonical ensemble (GCE). Instead
the ensemble describing equilibriation needs to take into
account the additional, nontrivial conserved quantities that,
at least according to the theoretical minimal model of the
gas (the Lieb-Liniger (LL) model [5]), are present in the
system. This new ensemble has been dubbed the general-
ized Gibbs ensemble (GGE). The GGE takes as the density
matrix

�̂ GGE ¼ Z�1 exp

�
�X

i

�iQi

�
; (1)

where the Qi form an independent, complete sequence of
conserved quantities in the system and �i correspond to a
set of generalized (inverse) temperatures. Computation of
this density matrix is nontrivial and has only been success-
fully accomplished in certain special limits. Most of these
limits are in models where interactions (though not
necessarily correlation functions) correspond to a free
model (the hard core limit of the interacting Bose gas

[4], quadratic Hamiltonians [6], Luttinger liquids [7], the
sine-Gordon model at the free-fermion point and in the
semiclassical limit [8], and the quantum Ising model in
the absence of a longitudinal field [9,10]). A notable ex-
ception was the study of Fioretto and Mussardo [11] where
it was possible to study quenches in general interacting
integrable models but with the restriction to a very special
set of quench protocols.
It is against this backdrop that we present a general

methodology able to study nonequilibrium behavior and
quench dynamics of low-dimensional interacting models,
both integrable and nonintegrable. This method is predi-
cated on a numerical renormalization group (NRG) able to
study models which can be represented as perturbed inte-
grable and conformal field theories (CFT) [12],

H ¼ HIntegrable=CFT þ Vperturbation: (2)

The LL model in a trapping potential takes this form. We
believe that this methodology is a valuable addition to
other general methodologies used to study dynamics in
low-dimensional systems such as the time-dependent den-
sity matrix renormalization group [13–17]. At least for a
subset of quenches, where we quench into an integrable
system (say by turning off the trapping potential in a LL
system), we can track the dynamics for all times.
Concomitant with the introduction of this tool to study

quench dynamics, we present a general methodology to
compute the density matrix of the GGE using information
arising from the application of the NRG. We show how one
can write down a simple set of equations governing the
GGE and how the entire infinite set of generalized tem-
peratures f�ig1i¼1 can be readily determined.
The specific example we consider is the LL model

perturbed by a one-body parabolic trap VðxÞ ¼ m!2x2=2,

H ¼ � @
2

2m

XN
j¼1

@2

@x2j
þ 2c

X
hi;ji

�ðxi � xjÞ þ
X
i

VðxiÞ (3)
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(we will work in units where 2m ¼ @ ¼ 1). In running the
NRG, we use the basis of eigenstates of the LL model and
their matrix elements with respect to the trapping potential.
Both the description of the states and the computation of
matrix elements in the LL model are much more compli-
cated than the examples of relativistic field theories where
the NRG has been applied previously [12]. The states in the
LL model consist of N strongly interacting particles and
not few-particle excitations above the true vacuum state,
while the matrix elements do not see a chiral factorization
as in a relativistic gapless theory but are N-dimensional
determinants [18]. To tackle this, we took recourse to a
highly optimized set of routines known as ABACUS [19]
which solves and evaluates all equations needed to char-
acterize both the necessary eigenstates and their matrix
elements. This package has been shown to be able to
successfully compute dynamical response functions for
the LL model [19].

We first use the NRG to extract the ground state of the
LL model in a trap [20]. The NRG produces the ground
state of the gas, jc iGS, as a linear combination of exact
eigenstates, jsi, of the LL model, jc iGS ¼

P
scsjsi. In

order to accurately describe the ground state in the NRG
procedure we typically consider on the order of 104–105

states. We then consider a sudden release of the trap; that
is, we will study the gas where we quench into an inte-
grable model. For these types of quenches our methodol-
ogy gives us the ability to study the evolution of the gas for
arbitrary times. Each state, jsi, appearing in the ground
state is characterized by a set of N (one for each particle)
rapidities (quasimomenta) f�ngNn¼1. These rapidities are

solutions to the Bethe equations,

ei�nL ¼ Y
m�n

�n � �m þ ic

�n � �m � ic
; (4)

and can be readily obtained to arbitrary accuracy. With the
NRG we can compute the coefficients cs with reasonably
high accuracy (see the Supplemental Material [20]). Time
evolution under the postquench Hamiltonian (the unper-
turbed LL model) is extremely simple. If Es is the energy
of state jsi, the time evolution is described by jc ðtÞiGS ¼P

scse
�iEstjsi. Because each state’s energy, Es, is given in

terms of the �n’s as
P

n�
2
n, we can compute the phases

appearing in the above sum to arbitrary accuracy for arbi-
trary time.

To characterize the evolution of the gas in the long time
limit we compute the momentum distribution function

(MDF) nk ¼ hc y
k c ki in the diagonal ensemble (DE). An

observable OyO in this ensemble is simply given by

hOyOiDE � X
s

jcsj2hsjOyOjsi: (5)

To compute this correlation function we insert a resolution
of the identity between Oy and O and use a specially
designed version of ABACUS for excited states to compute

all of the necessary matrix elements (see the Supplemental
Material [20]).
In Fig. 1, we plot the MDF in the DE of the gas post-

release for two values of c (c ¼ 10 and c ¼ 7200) and for a
variety of system sizes, with!L fixed and keeping N ¼ L.
For comparison we also plot the MDF of the gas in its
ground state.
We see, as expected, that the MDF of the gas is perturbed

from that of the ground state at low momenta but remains
unchanged from the ground state MDF at higher momenta.
The relative insensitivity to different values of N ¼ L;! is
consistent with a perturbative (in !) computation of the

MDF in the DE at c ¼ 1, which shows nðkÞDE¼nðkÞGSþ
ð!L
2�Þ4ðNLÞ1=2m

2
ffiffiffiffiffi
2�

p
B0

8v2
Fk

5=2 þOð!8Þ. Here nðkÞGS is the MDF of the

ground state, the constant B0 � 0:5124 [21], and vF is the
velocity of the gas. The scaling with N, L, and ! indicated
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FIG. 1 (color online). The MDF in the DE of the gas after
release from a trap for c ¼ 10 (top) and c ¼ 7200 (bottom).
Shown are the gases at (N ¼ L ¼ 14, ! ¼ 0:64), (N ¼ L ¼ 28,
! ¼ 0:32), and (N ¼ L ¼ 56, ! ¼ 0:16). Error bars are given
for the N ¼ L ¼ 56 data alone and are estimated from the speed
of convergence of the NRG (see the Supplemental Material
[20])—we believe the N ¼ L ¼ 14, 28 data are completely
converged. The MDF of the untrapped gas (N ¼ L ¼ 56) is
shown for comparison as is the analytic expression available for
the Tonks-Girardeau gas c ¼ 1 from Ref. [22].
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by this expression implies that variations in nðkÞDE be-
tween different system sizes in Fig. 1 are due to finite
size corrections which are small (on the order of the
symbol size). As an important check of our results, the
high momenta tails of the MDFs at c ¼ 7200 behave as the
predicted k�4 [22–24].

While the diagonal ensemble tells us what the final
steady state of the gas is after its release, a question of
primary interest is whether the steady state can be associ-
ated with some ensemble. It has been postulated [4] that for
a quench into an integrable system the correct ensemble to
use is the GGE ensemble in Eq. (1). The Qi’s are here
nontrivial polynomials in the field operators (and their
derivatives) [25]. The action of the Qi’s on the states, jsi,
is however straightforward. With each state, jsi, charac-
terized by a set ofN rapidities, �i, the action of theQi upon
jsi is Qijs;�1; � � � ; �Ni ¼

P
j�

i
jjs;�1; � � � ; �Ni; that is to

say, Qi acts on the state like an ith power sum. This shows
that the Qi’s are both a complete and independent set of
charges inasmuch as the polynomials form a complete and
independent basis in the space of single variable functions.

To compute �̂GGE the most straightforward path is to
compute hQii at t ¼ 0 and insist that the set of �i’s is such
that Trð�̂GGEQiÞ gives the same answer. In the case of the
hard core limit this is readily doable as the Qi’s can be
written in terms of a more amenable basis, the momentum
occupation numbers: Qi ¼ P

��
in�, where n� tells you

whether there is a particle with rapidity of the form � ¼
2�m=L for m 2 Z. In this basis of charges, hn�iGGE sim-
plifies to Tr½expð���n�Þn��=Tr expð���n�Þ; i.e., for
such expectation values the ensemble factorizes, and ��

is readily computed. This simplification, however, does not
exist away from the hard core limit and we are instead left
with a complicated nonlinear minimization problem which
on the face of it does not obviously have a solution. We
now show that it does and that the �i’s can be computed
readily. We do so through a (generalized) thermodynamic
Bethe ansatz [26].

Because the action of the charges Qi on the states, jsi, is
given simply in terms of the rapidities, �i, identifying the
states, to ask that hQiit¼0 ¼ hQiiGGE amounts to asking

whether there is a set of �’s, f~�jgNj¼1, such that

hQiit¼0 ¼
X
j

~�i
j; i ¼ 1; 2; � � � :

There is in fact such a set. We can moreover determine its
rapidity distribution, which we will call �GGEð�Þ, directly
from jc iGS. To each state, js;�s1; � � � ; �sNi, we associate a
distribution, �sð�Þ, governing the �’s of that particular
state: �sð�Þ ¼ 1

L

P
i�ð�� �siÞ. Then �GGEð�Þ is the

weighted sum of the �sð�Þ’s,
�GGEð�Þ ¼

X
s

jcsj2�sð�Þ:

In particular
R
d��GGEð�Þ�i ¼ L�1hQiit¼0.

�GGE contains, implicitly, all the information to charac-
terize the action of �̂GGE on an eigenstate of the LL model
[26]. A distribution of �’s must be consistent with the
Bethe equations [Eq. (4)]. In the continuum limit, these
equations can be rewritten as [5,27]

�GGEð�Þ þ �h
GGEð�Þ ¼

1

2�
þ

Z d�0

2�
Kð�� �0Þ�GGEð�Þ;

(6)

where �h
GGEð�Þ is the density of holes in the � distribution

and Kð�Þ ¼ 2c=ðc2 þ �2Þ. Now the GGE is derived by the
same principles as the grand canonical ensemble, namely,
entropy is maximized subject to the constraints of fixed
conserved charges (energy for the grand canonical
ensemble, all the charges, Qi, for the GGE). Thus associ-
ated with GGE is a generalized free energy FGGE ¼R
d��GGEð�Þ"0�GGEð�Þ � S, where "0�GGEð�Þ �

P
i�i�

i

is a generalized energy. It corresponds to the action of
�̂GGE on a state js;�1; � � � ; �Ni,

�̂ GGEjs;�1; � � � ; �Ni ¼ e�
P

i
"0�GGEð�iÞ

Z
js;�1; � � � ; �Ni:

(7)

In particular knowing "0�GGE then allows us to compute
general expectation values in the GGE. While "0�GGE

differs from its form in the grand canonical ensemble, S
is the standard entropy [27] of a system with a given
distribution of particles, �GGE, and holes, �h

GGE,

S ¼
Z

d�½ð�GGE þ �h
GGEÞ logð�GGE þ �h

GGEÞ
� �GGE log�GGE � �h

GGE log�
h
GGE�: (8)

We now show that we can express "0�GGE in terms of �GGE

that we derived from jc iGS.
If we minimize the generalized free energy we arrive at a

constraint between the particle and hole distributions and
"0�GGE,
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FIG. 2 (color online). "0ð�Þ and �ð�Þ for both the GGE and
GCE ensembles for a gas with N ¼ L ¼ 56, c ¼ 7200, and a
prequench trap strength, ! ¼ 0:256. For the GCE ensemble, the
effective temperature is T ¼ 1:54. The quantities plotted are
symmetric about � ¼ 0.
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"ð�Þ¼"0�GGEð�Þ�
Z d�0

2�
Kð���0Þlog½1þe�"ð�Þ�; (9)

where " ¼ logð�h
GGE=�GGEÞ. Thus to determine "0�GGE we

take our knowledge of �GGEð�Þ obtained from jc iGS, use
Eq. (6) to determine �h

GGE which then gives us "ð�Þ. From
Eq. (9), we then can fix "0�GGE.

Following this procedure, we plot in Fig. 2 �GGE and
"0�GGE for the gas in the hard core limit. For comparison,
we plot what these quantities would be if instead of a
generalized Gibbs ensemble, the thermodynamics was
governed by the grand canonical ensemble. (In this
case we use the standard thermodynamic Bethe ansatz
equations [27] to determine what �GCE and "0�GCE ¼
�ð�2 ��Þ need to be, i.e., what the effective temperature
needs to be, if they are to reproduce the correct density and
average energy of the system GShc jHjc iGS.) We see that

both �GGE and "0�GGE have considerably more structure
than that of their grand canonical counterparts.

We now use this ability to compute "0�GGEð�Þ, to com-
pute various expectation values of observables in the GGE.
In Fig. 3, we plot the MDF as computed in the DE and in

both the GGE and GCE. The error estimate is computed
similarly as in Fig. 1 (see the Supplemental Material [20]
for details). For the data at hand, we see that for low
momenta the two ensemble averages, GGE and GCE,
disagree with the DE. However the GGE provides a con-
siderably better match to the DE than does the ordinary
thermal ensemble GCE. From the finite size comparison
(see Fig. 3 of [20]), it can be argued (although not con-
clusively) that at small but finite k, this difference will
vanish with increasing system size.
The disagreement between ensembles in the data is not

entirely surprising. The logic of the GGE is such that it is
expected to describe correlations that are local in space (and
that involve a distance scale significantly smaller than
the system size). We thus do not expect the correlations at
k� 1=L to be particularly well described by the GGE.
However there is the possibility that the differences between
ensembles will remain at finite k > 1=L even in the infinite
volume limit. In recent work [28], the entropy associated
with the DE was shown to be considerably smaller than that
of the GGE implying that the DE is more tightly constrained
than the GGE; i.e., the GGE seems to be missing correla-
tions. It would be interesting to understand if this missing
entropy is solely associated with nonlocal correlations.
In conclusion, we have demonstrated how a NRG based

on exploiting the integrability of the LL model can be used
to study the time-dependent evolution after a quantum
quench where a 1D gas is released from a parabolic trap.
We have also demonstrated how to use the information
arising from the NRG to construct the corresponding GGE
which has been suggested as a possibility for governing the
postquench dynamics. While we have focused on the LL
model, this methodology is applicable to any nonrelativ-
istic integrable theory of which the Heisenberg and XXZ
spin chains are two prominent examples.
This research was supported by the US DOE (DE-AC02-

98CH10886), the New York Center for Computational
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Laboratory, the Foundation for Fundamental Research on
Matter, and the Netherlands Organisation for Scientific
Research. We thank F. Essler, G. Brandino, and J. Mossel
for useful discussions.
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[16] C. Kollath, A. Läuchli, and E. Altman, Phys. Rev. Lett. 98,

180601 (2007).
[17] M. Cramer, A. Flesch, I. McCulloch, U. Schollwöck, and
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