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We derive an infinite series of exact equations for the Bak-Sneppen (BS) model in arbitrary
dimensions. These equations relate different moments of temporal duration and spatial size o
avalanches. We prove that the exponents of the BS model are the same above and below t
critical point, and express the universal amplitude ratio of the avalanche spatial size in terms of th
critical exponents. The equations uniquely determine the shape of the scaling function of the avalanch
distribution. It is shown that in the BS model in arbitrary dimensions there is only one independent
critical exponent. [S0031-9007(96)00781-8]

PACS numbers: 87.10.+e, 05.40.+ j, 64.60.Fr, 64.60.Lx
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Recently Bak and Sneppen [1] introduced a particula
simple toy model of biological evolution (the BS mode
It provides a coarse-grained description of the behavio
the ecosystem of interacting species driven by muta
and natural selection. The features of the real evoluti
ary process, which may be correctly reproduced by
model, include the intermittent behavior (punctuated eq
librium), the apparent scale invariance of large extinct
events [2], and the power law probability distribution
the lifetimes of species. In the simplest variant of the
model the ecosystem consisting ofL species is character
ized byL numbersfi arranged on a line. The numberfi

represents the effective barrier for a successful muta
of ith species. At every time step the smallest numbe
the system is located, and this species is selected for
tation. As a result of this mutation this number, as w
as two of its nearest neighbors (representing the spe
that strongly interact with a mutated one), are replac
with new uncorrelated random numbers drawn from
uniform distribution between 0 and 1. The generalizat
of these rules to higher spatial dimensions is straight
ward. The BS model may describe the evolution on
longest time scale, where, due to universality, the ex
microscopic details are of no importance.

In fact, there exists a whole class of models where
rules consist of selecting the site with the extremal (glo
maximal or minimal) value of some variable and th
changing this variable and its nearest neighbors acc
ing to some stochastic rule. These models, referred
as extremal models, were extensively studied (for a re
cent review, see [3]). They were employed to descr
a variety of physical phenomena such as fluid invas
in disordered porous media [4], low temperature cre
[5], earthquake dynamics [6], etc. Among these mo
els, the BS model occupies a special place similar to
of the Ising model in the equilibrium statistical mecha
ics, since many observations can be rigorously pro
for the BS model and then applied to other extrem
models based on numerical simulations and less rigor
arguments.
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The feature of interest in the BS model (as well
in other extremal models) is its ability to organize itse
into a scale-free stationary state. The dynamics in t
critical state is given in terms of bursts of activity o
avalanches, which form a hierarchical structure [1,3] o
subavalanches within bigger avalanches. In the biologi
context these avalanches represent big extinction eve
In this work we introduce a “master” equation for th
avalanche hierarchy. It describes the cascade proces
which smaller avalanches merge together to form big
ones as the critical parameter is changed. From t
equation we derive aninfinite seriesof exactequations,
relating different moments of temporal durationS and
spatial areaRd of individual avalanches.

The master equation connects undercritical and ov
critical regions of parameters. Given the existence of
scaling, we rigorously prove that the exponents of the
model are the same above and below the transition. Fr
our results it follows that all terms of the Taylor series
the scaling functionfsxd for the avalanche distribution are
uniquely and explicitly determined by two critical expo
nents of the model. We expect that the usual restrictio
on the shape offsxd indirectly relate these two exponent
and, therefore, reduce the number of independent crit
exponents in the BS model to just one.

As was described in [3], the avalanches in extrem
models are defined from the value of the global minim
numberfminssd as a function of times. Then for any given
value of the auxiliary parameterf0, anf0 avalanche of size
(temporal duration)S is defined as a sequence ofS 2 1
successive events withfminssd , f0 confined between two
events withfminssd $ f0, in other words, the time steps
when fminssd $ f0 divide the time axis into a series o
avalanches, following one another. It is easy to see t
an avalanche defined by this rule is nothing but a stocha
process in which numbersfi , f0 play the role of active
particles that are randomly created or annihilated. T
avalanche is terminated (and the next one is immedia
started) when there are no particles left in the syste
As in any other creation-annihilation processes (such
© 1996 The American Physical Society
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directed percolation, for example) in the BS model the
exists a critical valuefc of the creation probabilityf0,
for which the creation of particles is marginally balance
by their annihilation, and avalanches of all sizes can
realized. In the stationary state of the BS model on t
infinite lattice,fminssd # fc for every s. Therefore, the
overcritical s f0 . fcd region of the branching process
parameters is not accessible, since there are no ev
starting or terminating such avalanches. However, if t
system is artificially prepared in the overcritical state wit
fi $ f0 . fc everywhere, one can observe overcritic
avalanches. Another way to look into the overcritica
properties of the model is to use theBS branching process
[7] in the simulations of the model. In this process on
only keeps track of the numbersfi , f0 and at each time
step activates the smallest one of them. It was shown
[7] that the undercritical avalanches in the BS model a
exactlyequivalent to the realizations of the BS branchin
process. However, in the latter case, one can selectf0 .

fc as well. Then there exists a nonzero probabilityP`s f0d
that the process will never stop (an infinite avalanche), b
at the same time the size of finite avalanches acquire
finite cutoff.

We characterize an avalanche by two principal num
bers: (1) S —the avalanche size, equal to its tempor
duration; (2)ncov —the number of sites covered (fi was
updated at least once) by the avalanche.

In one-dimensional models the connected nature of t
set of covered sites ensures its compactness (abse
of holes) and, therefore,ncov is precisely equal to the
avalanche spatial extentR. In higher dimensions (but
below the upper critical dimension) it was conjecture
in [3] that the set of covered sites is a nonfractal obje
of the same dimensionalityd as the underlying lattice.
This conjecture is based on the numerical observation t
the mass dimension of the avalancheD, which relates the
avalanche sizeS to its spatial extentR through

S , RD , (1)

is usually greater than the dimension of the “substrat
space d. Therefore, the set of covered sites, bein
the projection of all points in the avalanche along th
temporal axis onto the substrate space, is likely to be
dense object, and the spatial sizeR of the avalanche can
bedefinedby the relationncov ­ Rd .

The quantity of primary interest in the BS model i
the probability distributionPsS, f0d of the avalanche sizes
S at any given value of the auxiliary parameterf0.
The moments in time, whenf0 # fminssd , f0 1 df0,
serve as breaking points forf0 avalanches but not for
f0 1 df0 avalanches. Therefore, whenf0 is raised by
an infinitesimal amountdf0 some off0 avalanchesmerge
together to form biggers f0 1 df0d avalanches. In the
rest of this paper we study in more detail the properties
this merging process and the avalanche hierarchy tha
induces.
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The most important observation aboutf0 avalanches in
the BS model (as well as in several other extremal mode
such as the Sneppen model [8] or invasion percolati
[4]) made by Paczuski, Maslov, and Bak in [3,7] is tha
when anf0 avalanche is terminated, the numbersfi on
the set ofncov ­ Rd updated sites areuncorrelated and
uniformly distributed betweenf0 and1.

It was shown in [3,7] that the direct consequence of th
observation is that the probability of anf0 avalanche of
spatial sizeRd to merge with the subsequent one when th
parameterf0 is raised bydf0 is given byRddf0ys1 2 f0d.
(The merging occurs if at least one of the changed numb
falls in f f0, f0 1 df0g.) For the following arguments to be
true it is important that any two subsequent avalanches
mutually uncorrelated. That is, the probability distributio
of f0 avalanches, starting immediately after the terminati
of anf0 avalanche of a given sizeS, is independent ofS.
That is true for the BS model since the dynamics within a
f0 avalanche in the BS model is completely independe
of the particular value of the numbersfi . f0 in the
background that were left by the previous avalanche
This mutual independence maynot be the casefor other
extremal models such as the Sneppen model or invas
percolation.

Now we are in a position to write theexact master
equation describing how the avalanche merging chang
PsS, f0d as f0 is raised. LetRdsS, f0d be the average
number of updated (covered) sites in anf0 avalanche of
temporal sizeS. From our simulations of the BS mode
[3] we know that, forf0 close to fc, RdsS, f0d scales
with S asSdyD [see Eq. (1)]. However, for the following
arguments any form ofRdsS, f0d will suffice. The master
equation forPsS, f0d can be written as

s1 2 f0d
≠PsS, f0d

≠f0
­ 2 PsS, f0dRdsS, f0d

1

S21X
S1­1

PsS1, f0dRdsS1, f0d

3 PsS 2 S1, f0d . (2)

Here the first term describes the loss of avalanches
sizeS due to the merging with the subsequent one, wh
the second term describes the gain inPsS, f0d due to
the merging of avalanches of sizeS1 with avalanches of
size S 2 S1. Unlike in a conventional master equation
the parameterf0 in our master equation is not time
It is convenient to change variables fromf0 to g ­
2 lns1 2 f0d, so thatf0 ­ 0 corresponds tog ­ 0, f0 ­
1 corresponds tog ­ 1`, anddg ­ df0ys1 2 f0d. This
change is due to the fact that, although traditionally ne
random numbers are drawn from the flat distributio
P s f0d ­ 1, the “natural” distribution for the BS model
has the probability densityP sgd ­ e2g. As usual, the
critical properties of the model are independent of th
particular shape ofP . In the rest of the paper we will
use the natural variableg instead off0.
1183
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Equation (2) can be conveniently written in terms
Laplace transformspsa, gd ­

P`
S­1 PsS, gde2aS and

rsa, gd ­
P`

S­1 PsS, gdRdsS, gde2aS as ≠psa, gdy≠g ­
2rsa, gd 1 psa, gdrsa, gd, or simply

≠ lnf1 2 psa, gdgy≠g ­ rsa, gd . (3)

This exact equation is the central result of this paper. It
many interesting physical consequences. Wheng , gc all
avalanches are finitesP` ­ 0d and normalization require
ps0, gd ­

P`
S­1 PsS, gd ­ 1. From the general propertie

of the Laplace transform one can write the Taylor series
psa, gd andrsa, gd at a ­ 0 aspsa, gd ­ 1 2 kSlga 1

kS2lga2y2 2 kS3lga3y6 1 · · · and rsa, gd ­ kRdlg 2

kRdSlga 1 kRdS2lga2y2 2 1 · · · . Substitution of these
expressions into Eq. (3) results in≠y≠g lnskSlga 2

kS2lga2y2 1 · · ·d ­ kRdlg 2 kRdSlga 1 kRdS2lga2y2 1

· · ·. Since Eq. (3) holds for arbitrarya, comparing the
coefficients of different powers ofa in the above Taylor
series results in aninfinite series ofexact equations.
Comparison of the coefficients ofa0 gives

d lnkSlgydg ­ kRdlg . (4)

This is exactly the “gamma” equation derived in [9].
Higher powers ofa in Eq. (3) give newexact equa-

tions. Here we show just the first two:

d
dg

√
kS2lg

kSlg

!
­ 2kRdSlg , (5)

d
dg

√
kS3lg

3kSlg
2

kS2l2
g

2kSl2
g

!
­ kRdS2lg . (6)

The Taylor expansion changes slightly in the ov
critical region, where there is a finite probabilityP`sgd
to start an infinite avalanche. Since the avalanche
tribution PsS, gd is limited to finite avalanches, it is
naturally normalized to1 2 P`s gd. Therefore, when
g . gc the Fourier series forpsa, gd can be writ-
ten as psa, gd ­ 1 2 P`s gd 2 kSlga 1 kS2lga2y2 1

· · · . Now the comparison of the coefficients ata0 in
Eq. (3) gives

d ln P`s gdydg ­ kRdlg . (7)

This new equation is theg . gc analog of the gamma
equation (4). We will refer to it as “beta” equation [th
exponentb is traditionally used for the scaling ofP`s gd,
while 2g is used forkSlg].

There is a more straightforward way to derive Eq. (
from the average properties of the merging proce
The merging of finite and infinite avalanches gives
infinite avalanche and, therefore, leads to an incre
in P`s gd. The average probability of finite avalanch
merging with the next one asg is increased bydg is
kRdlgdg, and the probability that this next avalanch
happens to be an infinite one isP`s gd. Therefore,
dP`s gd ­ P`s gd kRdlgdg, which is just Eq. (7).

As in the undercritical case, the Taylor expansion
Eq. (3) for g . gc determines an infinite series of exa
1184
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equations. The first two of them are

d
dg

µ
kSlg

P`s gd

∂
­ 2kRdSlg , (8)

d
dg

√
kS2lg

P`s gd
1

2kSl2
g

P`s gd2

!
­ 2kRdS2lg . (9)

As in other creation-annihilation branching processe
the avalanche distributionPsS, gd in the BS model for
g , gc is known to have a scaling form

PsS, gd ­ S2tfsssSss g 2 gcdddd , (10)

where t and s are some critical exponents andfsxd is
a scaling function that rapidly decays to zero asx !
2`. From (10) it follows that the average avalanche siz
diverges wheng approachesgc from below askSlg ,
s gc 2 gd2g, whereg ­ s2 2 tdys. Substitution of this
expression into the gamma equation (4) results in

kRdlg ­ gys gc 2 gd , for g , gc . (11)

The exponent relation derived from (11) connectss to
D and t: s ­ 1 1 dyD 2 t [3]. It is easy to see that
Eqs. (5)–(9) do not yield additional exponent relations bu
further restrict the exact form of the avalanche distributio
scaling functionfsxd.

The scaling should work in the overcritical regime
as well. However, unlike in the equilibrium statistical
mechanics, the critical exponents can a priori be
different above and below the transition. In what follows
we show that, at least for the BS model, this is not true
Substitution of the scaling formP`s gd , s g 2 gcdb into
the beta equation (7) results in

kRdlg ­ bys g 2 gcd , for g . gc . (12)

From (12) it follows that the same exponent relation
s ­ 1 1 dyD 2 t holds in the overcritical region, and,
therefore. the exponents is the same above and below
the transition. The scaling form (10) can now be extende
to include the overcritical regionSssg 2 gcd . 0. As in
various percolation problems [10] the scaling form (10
for PsS, gd at g . gc results in the exponent relation
b ­ st 2 1dys. An interesting consequence of exac
Eqs. (11) and (12) is that the universal amplitude rati
for kRdlg is given by the ratio of two critical exponents

kRdlg1Dg

kRdlg2Dg
­

b

g
­

t 2 1
2 2 t

. (13)

This unusual relation between the universal amplitud
ratio and critical exponents is, to our knowledge, uniqu
for the BS model.

There is a case when the master equation (3) can
written in a closed form. This is the extensively studied
[11,12] mean field random neighbor version of the BS
model, where, at each time stepK 2 1, “neighbors” of
the active site are selected in an annealed random fash
throughout the whole system. It is easy to see that
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the thermodynamic limit of this model the number o
updated sites in the avalanche of temporal durationS
is given byncov ­ sK 2 1dS 1 1. This is the quantity
that should be used instead ofRdsS, gd in our equations.
The missing equation connectingrsa, gd and psa, gd
is rsa, gd ­ 2sK 2 1d≠psa, gdy≠a 1 psa, gd, and the
final form of Eq. (3) for the mean field BS model is

≠ lnf1 2 psa, gdg
≠g

­ 2sK 2 1d
≠psa, gd

≠a
1 psa, gd .

(14)
This equation should be solved with the initial conditio
psa, 0d ­ e2a , sincePsS, 0d ­ dS,1. We checked that
for K ­ 2 the generating functionX̀

S­1

PsS,f0dxS

­
1 2 2xf0s1 2 f0d 2 f1 2 4xf0s1 2 f0dg1y2

2f2
0 x

,

derived in [12] using different methods, after the subs
tution of x ­ e2a and f0 ­ 1 2 e2g satisfies (14) and
has the correct initial condition. That confirms the ove
all consistency of our approach.

It can be shown [13] that for any givent and s, the
Eq. (3) recursively defines all terms in the Taylor series
the scaling functionfsxd at x ­ 0:

fsn11ds0d ­
X

n11n2­n

Gs1 2 t 1 sn1dGss 1 sn2d
Gs1 2 t 1 s 1 snd

3
n!

n1! n2!
fsn1ds0dfsn2ds0d ,

whereGsxd is the Euler’s gamma function. We suspe
that for any givendyD there exist uniquet and s ­
1 1 dyD 2 t such that the scaling function satisfie
all usual requirements, such asfsxd ! 0, when x !

6`, and
R`

0 x2tf fs0d 2 fs2x1yndgdx ­ 0 (the absence
of the infinite avalanche belowgc). Which of these
constraints indirectly definest as a function ofdyD
remains to be determined. The numerical solution
Eq. (2) withRdsS, f0d ­ ASdyD indeed seems to give the
correct value fort [13]. In Fig. 1 we present the results o
the numerical solution of Eq. (2) withRdsS, f0d ­ S0.412,
corresponding to the best numerical estimate ofdyD
in the one-dimensional BS model [3,14]. The solutio
indeed yieldst ­ 1.1 6 0.1 which is consistent with
t ­ 1.07 6 .01 determined by extensive Monte Carl
simulations [3,14].
f

n

ti-

r-

of

t

s

of

f

n

FIG. 1. The results of the numerical solution of Eq. (1) on
the interval1 # S # 100 with RdsS, gd ­ S0.412. Values ofg
increase from top to bottom. The exponent of the power la
part was measured to be1.1 6 0.1.
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