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Infinite Series of Exact Equations in the Bak-Sneppen Model of Biological Evolution
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We derive an infinite series of exact equations for the Bak-Sneppen (BS) model in arbitrary
dimensions. These equations relate different moments of temporal duration and spatial size of
avalanches. We prove that the exponents of the BS model are the same above and below the
critical point, and express the universal amplitude ratio of the avalanche spatial size in terms of the
critical exponents. The equations uniquely determine the shape of the scaling function of the avalanche
distribution. It is shown that in the BS model in arbitrary dimensions there is only one independent
critical exponent. [S0031-9007(96)00781-8]

PACS numbers: 87.10.+e, 05.40.+j, 64.60.Fr, 64.60.Lx

Recently Bak and Sneppen [1] introduced a particularly The feature of interest in the BS model (as well as
simple toy model of biological evolution (the BS model). in other extremal models) is its ability to organize itself
It provides a coarse-grained description of the behavior ointo a scale-free stationary state. The dynamics in this
the ecosystem of interacting species driven by mutatiorritical state is given in terms of bursts of activity or
and natural selection. The features of the real evolutionavalancheswhich form a hierarchical structure [1,3] of
ary process, which may be correctly reproduced by thisubavalanches within bigger avalanches. In the biological
model, include the intermittent behavior (punctuated equicontext these avalanches represent big extinction events.
librium), the apparent scale invariance of large extinctionin this work we introduce a “master” equation for the
events [2], and the power law probability distribution of avalanche hierarchy. It describes the cascade process in
the lifetimes of species. In the simplest variant of the BSwvhich smaller avalanches merge together to form bigger
model the ecosystem consisting lofspecies is character- ones as the critical parameter is changed. From this
ized by L numbersf; arranged on a line. The numbgr  equation we derive aimfinite seriesof exactequations,
represents the effective barrier for a successful mutatiorelating different moments of temporal duratichand
of ith species. At every time step the smallest number irspatial areak? of individual avalanches.
the system is located, and this species is selected for mu- The master equation connects undercritical and over-
tation. As a result of this mutation this number, as wellcritical regions of parameters. Given the existence of the
as two of its nearest neighbors (representing the speciesaling, we rigorously prove that the exponents of the BS
that strongly interact with a mutated one), are replacedanodel are the same above and below the transition. From
with new uncorrelated random numbers drawn from theour results it follows that all terms of the Taylor series of
uniform distribution between 0 and 1. The generalizatiorthe scaling functiorf (x) for the avalanche distribution are
of these rules to higher spatial dimensions is straightforuniquely and explicitly determined by two critical expo-
ward. The BS model may describe the evolution on thenents of the model. We expect that the usual restrictions
longest time scale, where, due to universality, the exaabn the shape of (x) indirectly relate these two exponents
microscopic details are of no importance. and, therefore, reduce the number of independent critical

In fact, there exists a whole class of models where thexponents in the BS model to just one.
rules consist of selecting the site with the extremal (global As was described in [3], the avalanches in extremal
maximal or minimal) value of some variable and thenmodels are defined from the value of the global minimal
changing this variable and its nearest neighbors accordiumberf i, (s) as a function of time. Then for any given
ing to some stochastic rule. These models, referred twalue of the auxiliary parametgs, an f, avalanche of size
as extremal modelswere extensively studied (for a re- (temporal durationf is defined as a sequence $f— 1
cent review, see [3]). They were employed to describesuccessive events wifyi, (s) < fo confined between two
a variety of physical phenomena such as fluid invasiorevents withf i, (s) = fo, in other words, the time steps
in disordered porous media [4], low temperature creepvhen fuin(s) = fo divide the time axis into a series of
[5], earthquake dynamics [6], etc. Among these mod-avalanches, following one another. It is easy to see that
els, the BS model occupies a special place similar to thaan avalanche defined by this rule is nothing but a stochastic
of the Ising model in the equilibrium statistical mechan-process in which number§ < f, play the role of active
ics, since many observations can be rigorously proveparticles that are randomly created or annihilated. The
for the BS model and then applied to other extremalvalanche is terminated (and the next one is immediately
models based on numerical simulations and less rigoroustarted) when there are no particles left in the system.
arguments. As in any other creation-annihilation processes (such as
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directed percolation, for example) in the BS model there The most important observation abgigtavalanches in
exists a critical valuef. of the creation probabilityf,,  the BS model (as well as in several other extremal models,
for which the creation of particles is marginally balancedsuch as the Sneppen model [8] or invasion percolation
by their annihilation, and avalanches of all sizes can b§4]) made by Paczuski, Maslov, and Bak in [3,7] is that
realized. In the stationary state of the BS model on thevhen anf, avalanche is terminated, the numbeg¥son
infinite lattice, fmin(s) = f. for everys. Therefore, the the set ofn.,, = R? updated sites arancorrelated and
overcritical (fo > f.) region of the branching process uniformly distributed betweefy and 1.
parameters is not accessible, since there are no eventslt was shown in [3,7] that the direct consequence of this
starting or terminating such avalanches. However, if theobservation is that the probability of afy avalanche of
system is artificially prepared in the overcritical state withspatial sizeR¢ to merge with the subsequent one when the
fi = fo > f. everywhere, one can observe overcriticalparameter, is raised bydf, is given byR?dfy/(1 — fo).
avalanches. Another way to look into the overcritical (The merging occurs if at least one of the changed numbers
properties of the model is to use tB& branching process fallsin[ fo, fo + dfo].) Forthe following arguments to be
[7] in the simulations of the model. In this process onetrue it is important that any two subsequent avalanches are
only keeps track of the numbefs < f; and at each time mutually uncorrelated. Thatis, the probability distribution
step activates the smallest one of them. It was shown iof f, avalanches, starting immediately after the termination
[7] that the undercritical avalanches in the BS model aref an f, avalanche of a given siz& is independent of.
exactlyequivalent to the realizations of the BS branchingThat is true for the BS model since the dynamics within an
process. However, in the latter case, one can s¢lect  fy avalanche in the BS model is completely independent
feaswell. Then there exists a nonzero probab#ity fo)  of the particular value of the numbeys > f, in the
that the process will never stop (an infinite avalanche), bubackground that were left by the previous avalanches.
at the same time the size of finite avalanches acquires Bhis mutual independence mawt be the caséor other
finite cutoff. extremal models such as the Sneppen model or invasion

We characterize an avalanche by two principal num-ercolation.
bers: (1) S—the avalanche size, equal to its temporal Now we are in a position to write thexact master
duration; (2)n.,,—the number of sites covered’{was equation describing how the avalanche merging changes
updated at least once) by the avalanche. P(S, fo) as f, is raised. LetR4(S, fy) be the average

In one-dimensional models the connected nature of thaumber of updated (covered) sites in Agnavalanche of
set of covered sites ensures its compactness (absengnporal sizeS. From our simulations of the BS model
of holes) and, therefore.,, is precisely equal to the [3] we know that, forf, close tof., R(S, f,) scales
avalanche spatial exterR. In higher dimensions (but with S ass?/? [see Eq. (1)]. However, for the following
below the upper critical dimension) it was conjecturedarguments any form aR(S, fo) will suffice. The master
in [3] that the set of covered sites is a nonfractal objecequation forP(S, f,) can be written as

of the same dimensionality as the underlying lattice. aP(S, fo)
This conjecture is based on the numerical observation that (1 — fo) T P(S, fo)R(S, fo)
the mass dimension of the avalanabewhich relates the 9fo -
avalanche siz§ to its spatial extenR through
P J + > P(S1. foR4(S1. fo)
S ~ RP, (1) Si=1
X P(S = Si1, fo). 2)

is usually greater than the dimension of the “substrate”
space d. Therefore, the set of covered sites, beingHere the first term describes the loss of avalanches of
the projection of all points in the avalanche along thesize S due to the merging with the subsequent one, while
temporal axis onto the substrate space, is likely to be ¢he second term describes the gain AAS, fy) due to
dense object, and the spatial si2eof the avalanche can the merging of avalanches of sifg with avalanches of
be definedby the relatiorv.,, = R?. sizeS — §;. Unlike in a conventional master equation,
The quantity of primary interest in the BS model is the parameterf, in our master equation is not time.
the probability distributiorP(S, f) of the avalanche sizes It is convenient to change variables froiy to g =
S at any given value of the auxiliary parametgs. —In(1 — fy), so thatfy, = 0 corresponds tg = 0, fo =
The moments in time, whelfiy = fuin(s) < fo + dfe, 1correspondstg = +«, anddg = dfy/(1 — fo). This
serve as breaking points fofy, avalanches but not for change is due to the fact that, although traditionally new
fo + dfy avalanches. Therefore, whefy is raised by random numbers are drawn from the flat distribution
an infinitesimal amoundf, some off, avalanchesnerge  P(fy) = 1, the “natural” distribution for the BS model
together to form biggef fo + dfy) avalanches. In the has the probability density?(g) = ¢~¢. As usual, the
rest of this paper we study in more detail the properties ofritical properties of the model are independent of the
this merging process and the avalanche hierarchy that garticular shape ofP. In the rest of the paper we will
induces. use the natural variablg instead off.
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Equation (2) can be conveniently written in terms ofequations. The first two of them are
Laplace transformsp(a, g) = Z}":l P(S,g)e *5 and d [ (S) .
rla.g) = S5 PUS, RY(S, g)e 5 asipla )/ g = L (55) - ~®is.  ®
~r(a.g) + pla.g)r(ag), or simply g \Pulg

dIn[1 = pla,g)l/ig = r(a,g). ®3) d [ (5%, 22

This exact equation is the central result of this paper. It has E Po(g) P.(g)?
many interesting physical consequences. Wghen g, all ) . o )
avalanches are finite.. = 0) and normalization requires _ AS in other creation-annihilation branching processes,
p(0,g) = Y5_, P(S.g) = 1. Fromthe general properties the avalanche distributio®(S, ¢) in the BS model for
of the Laplace transform one can write the Taylor series fof < &c IS known to have a scaling form

= —(RS?),. ©)

pla,g)andr(a, g) ata = 0asp(a,g) = 1 = (S),a@ + P(S,g) =S Tf(S7(g — g), (10)
($2,a7/2 — (S)ad/6 + - and r(a.g) = (R4, — y .
(RIS),a + (RIS%),a%/2 — +---. Substitution of these where r and o are some critical exponents arfdx) is

a scaling function that rapidly decays to zero as-
—o, From (10) it follows that the average avalanche size
diverges wheng approachesg. from below as(S), ~

(gc — g)77,wherey = (2 — 7)/o. Substitution of this
expression into the gamma equation (4) results in

expressions into Eq. (3) results ia/dg IN((S),a —
(§%)ga?/2+ - )=(R%), —(RIS),a + (RIS?),a?/2 +
Since Eg. (3) holds for arbitrarg, comparing the
coefficients of different powers at in the above Taylor
series results in amnfinite series ofexact equations.

Comparison of the coefficients af° gives (R, = v/(gc — g), forg<g,. (11)
d In(S),/dg = (R'),. (4)  The exponent relation derived from (11) conneotsto
This is exactly the “gamma” equation derived in [9]. Dandr: o =1+ d/D — 7[3]. ltis easy to see that
Higher powers ofa in Eq. (3) give newexactequa- EQs. (5)—(9) do not yield additional exponent relations but
tions. Here we show just the first two: further restrict the exact form of the avalanche distribution
d (5% scaling functionf (x).
d_< g) = 2(R’S),, (5) The scaling should work in the overcritical regime
g \ (S) as well. However, unlike in the equilibrium statistical

4 (5% (522 mechanics, the critical exponent can a priori be
£ <_g — _f;) = (RIS?),. (6) different above and below the transition. In what follows
dg \3(S),  2S8); we show that, at least for the BS model, this is not true.

The Taylor expansion changes slightly in the over-Substitution of the scaling form..(g) ~ (g — gc)” into
critical region, where there is a finite probabilif.(¢)  the beta equation (7) results in
to start an infinite avalanche. Since the avalanche dis- (R, = B/(g — g.), forg > g.. (12)

tribution P(S,g) is limited to finite avalanches, it is . ,
naturally normalized tol — P.(g). Therefore, when From (12) it follows that the same exponent relation

¢ > g. the Fourier series forp(a,g) can be writ- 7 = 1 + d/D — 7 holds i_n the overcritical region, and,
ten as p(a,g) = 1 — Pu(g) — (S)ea + <Sz>ga2/2 + therefore. the exponent is the same above and below

. Now the comparison of the coefficients af in the transition. The scaling form (10) can now be extended

Eq. (3) gives to include the overcritical regiofi?(g — g.) > 0. Asin
J various percolation problems [10] the scaling form (10)
d INPx(g)/dg = (R%; . (") for P(s,g) at ¢ > g. results in the exponent relation

This new equation is thg > g. analog of the gamma B = (r — 1)/o. An interesting consequence of exact
equation (4). We will refer to it as “beta” equation [the Egs. (11) and (12) is that the universal amplitude ratio
exponentg is traditionally used for the scaling #f.(g),  for (R?), is given by the ratio of two critical exponents
while —7y is used foKS),]. (R%Yg 12 B -1

There is a more straightforward way to derive Eq. (7) RO . T o= (13)
from the average properties of the merging process. (R)g—ag Y T
The merging of finite and infinite avalanches gives anThis unusual relation between the universal amplitude
infinite avalanche and, therefore, leads to an increasetio and critical exponents is, to our knowledge, unique
in P.(g). The average probability of finite avalanche for the BS model.
merging with the next one ag is increased bydg is There is a case when the master equation (3) can be
(R%),dg, and the probability that this next avalanchewritten in a closed form. This is the extensively studied
happens to be an infinite one B.(g). Therefore, [11,12] mean field random neighbor version of the BS
dP-(g) = P=(g)(R%)dg, which is just Eq. (7). model, where, at each time stép — 1, “neighbors” of

As in the undercritical case, the Taylor expansion ofthe active site are selected in an annealed random fashion
Eq. (3) forg > g. determines an infinite series of exact throughout the whole system. It is easy to see that in
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the thermodynamic limit of this model the number of
updated sites in the avalanche of temporal duratfon
is given byn., = (K — 1)S + 1. This is the quantity
that should be used instead Bf (S, g) in our equations.
The missing equation connectinga, g) and p(a, g)
isr(a,g) = —(K — 1)ap(a,g)/da + p(a,g), and the
final form of Eq. (3) for the mean field BS model is

9 In[1 — p(a.g)] _
ag

(K - l)ap((;;’g)

+ pla,g).

(14)
This equation should be solved with the initial condition
p(a,0) = e~ %, since P(S,0) = &s;. We checked that
for K = 2 the generating function

D P(S,fo)x*
S=1

_ 1= 2xfo(1 = fo) = [1 = dxfo(l — fo)]'/2
2f§x

bl

derived in [12] using different methods, after the substi-

tution of x = ¢ * and fy = 1 — ¢ ¢ satisfies (14) and

has the correct initial condition. That confirms the over-

all consistency of our approach.
It can be shown [13] that for any given and o, the

Eq. (3) recursively defines all terms in the Taylor series ofV

the scaling functiory (x) atx = 0:

I'ha — 7+ on)l'(c + ony)

(n+1) _
fr0) nlﬂzlz‘;n 'l—7+ o0 + on)
!
X "1 f(nl)(o)f(nz)(o) ,
nl.I’Zz!

whereI'(x) is the Euler's gamma function. We suspect

that for any givend/D there exist uniquer and o =

1 +d/D — 7 such that the scaling function satisfies
all usual requirements, such ax) — 0, when x —
+oo, and [y x "[ £(0) — f(—x'/*)]dx = 0 (the absence
of the infinite avalanche below.). Which of these
constraints indirectly defines as a function ofd/D

remains to be determined. The numerical solution of

Eq. (2) withR%(S, fo) = ASY/? indeed seems to give the
correct value forr [13]. In Fig. 1 we present the results of
the numerical solution of Eq. (2) witR4(S, fo) = S%412,
corresponding to the best numerical estimatedgD

-4

-5

o

Io1g1OS

FIG. 1. The results of the numerical solution of Eg. (1) on
the intervall = S = 100 with R(S, g) = S°*'2. Values ofg
increase from top to bottom. The exponent of the power law
part was measured to Hel = 0.1.
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