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Abstract

We first review the derivation of the exact expression for the av-
erage distance (r;,) of the n-th neighbour of a reference point among
a set of N random points distributed uniformly in a unit volume of a
D-dimensional geometric space. Next we propose a ‘mean-field’ the-
ory of (r,) and compare it with the exact result. The result of the
‘mean-field’ theory is found to agree with the exact expression only in
the limit D — oo and n — oco. Thus the ‘mean-field’ approximation
is useless in this context.



1 Introduction to the average n-th neighbour
distance

Consider N (a large number) points distributed randomly and uniformly in
a unit volume of a D-dimensional geometric space. A point is said to be the
n-th neighbour of another (the reference point) if there are exactly n— 1 other
points that are closer to the latter than the former. The average distance
to the first neighbour is exactly known [[l; though originally calculated in
three dimensions the method can be used for any finite dimension D : The
probability distribution P(ry)dr; of the first neighbour distance is defined by
the probability of finding the first neighbour of a given reference point at a
distance between r; and r; + dry :

P(r)dry = [1 =V ()Y (N =1)dV(r), (1)

where V(r) = 72/2. (r)P/T(D/2 + 1) is the volume of a D-dimensional
hypersphere of radius r; centered at the reference point. The average first
neighbour distance is defined as :

(r1) = /0 o P(ry) i, 2)

where R is the radius of a D-dimensional hypersphere of unit volume :

e (2 )]

With the probability distribution of equation [l| we get

() = /01 m 1= V)V (N = 1) dV ()
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Now we address the general problem : What is the form of the aver-

age n-th neighbour distance, for any finite n? Though this is a problem of
: : (D) . : :

purely geometric nature, the quantity (ry"’(n)) is relevant in physical and

computational contexts; for example, in astrophysics we need to know the

average distance between neighbouring stars distributed independently in a
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homogeneous universe [[], and in the traveling salesman problem we need
the average distance of the neighbours of each site for estimating the optimal
path-length [f].

We proceed by extending the line of argument used in the case of the first
neighbour [fl] to the n-th neighbour. The probability distribution of the n-th
neighbour distance 7, is defined as the probablity P(r,)dr, of finding the n-
th neighbour of a given reference point at a distance between r,, and r,, +dr,.
This is a conditional probability because we look for the n-th neighbour of a
point when its first (n — 1) neighbours have already been located :

B Vrn) = V(rae) V" (N =n) dV ()
PG dr, = |1 Al | B0 V) )

The quantity V' (r,) is the volume of a D-dimensional hypersphere of radius
r, centered at the reference point. For a given reference point and its first
n — 1 neighbours the average n-th neighbour distance is obtained as :

R
<Tn>(particular) :/ T'n P(Tn) d’f’n (6)

Tn—1
where, as before, R is the radius of a D-dimensional hypersphere of unit
volume. The quantity (ry) aricutar) 18 @ function of a particular ry,—1, rp—2, . . .,
r1 which are the distances of the first n — 1 neighbours of the given reference
point. To calculate the ensemble average of r, the quantity (rn) urticutan)
must be averaged successively over the probability distributions of each of
the first n — 1 neighbours :

(ra) = /0  dr P(r) / R dry P(ry) --- / R drn o P(rn_s)
R

R
></r 2 dry,—1 P(Tn_1)/r dry, i P(7n) (7)

where the probability distribution of the i-th neighbour is given by equation
B with 4 replacing n. After a change in the order of the integrals in equation
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(ra) = (N=1)(N =2)--- (N —n)
x /0 LAV V)P (1= V()Y / "y

0

V(rn) V(rn) V(rn)
></ drs / dr,_o / drp_1 (8)

V(T‘l) V(T‘n73) V(rn72)

which gives the final form of the average n-th neighbour distance :

G = (N7 ) W v W - ave)

n—1
(2 )y

This result was reported in [H].

Next we consider fluctuations ér, occuring in 7,. This can be calculated
exactly for any neighbour n ; the mean square deviation in r,, from its average
value is given by :

(Ora)? = (r2) = (r)’
- b G (3)""u

which vanishes as D — oo. This suggests that the form of (r,) for large D
can be arrived at by neglecting fluctuations, an approach which corresponds
to mean-field theories in statistical mechanics.

F(n—l—%) _Fz(n—l-%)

[(n) [2(n)

2 A ‘mean-field’ theory

By the following ‘mean-field” argument we derive an expression for the aver-
age n-th neighbour distance in large dimensions D. Since the average first
neighbour distance can be found easily, we derive (r,) in terms of (r1). As
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before we consider N (a large number of) random points distributed uni-
formly within a unit volume of a D-dimensional geometric space. We choose
any one of them as the reference point and locate its n-th neighbour. Ne-
glecting fluctuations, which we can do for large D, the distance between
them is 7,(N) =~ (r,(N)). Keeping these two points fixed we change the
number of points in the unit volume to Na by adding or removing points at
random; the factor « is arbitrary to the extent that Na and na are natural
numbers. Since the distribution of points is uniform, the hypersphere that
had originally enclosed just n points will now contain na points. Therefore,
what was originally the n-th neighbour of the reference point now becomes
the na-th neighbour. Since the two points under consideration are fixed, so
is the distance between them. Consequently,

(rn(N)) = (rna(Na)) . (11)

Now we take o = 1/n, so that

(ra(N)) = (ri(N/n)), (12)

which shows that the average n-th neighbour distance for a set of N random
points distributed uniformly is approximately given by the average distance
for a depleted set of N/n random points in the same volume. Using the
expression for (r1(NN)) from equation ] we get

e F(20)] e ) (B

Since the above argument neglects fluctuations the result of equation
ought to be exact in the limit D — oo.

The exact expression of (r,,) for a finite dimension D is expected to reduce
to the form of equation [l3 as D — oo where fluctuations do not affect. For
large D equation [] takes the following form :

o= an L5+ 1 5) (4551 (2)

For the above expression to reduce to the form of equation [[3 the sum 7~} %

must be equal to log, n which happens only in the limit n — oo. Thus for any



finite n the exact result of equation J fails to produce the fluctuation-free form
of equation [1J in large dimensions D. This shows that the ‘mean-field” ap-
proximation is useless in the present context. However the ‘mean-field’ ap-
proach for (r,) may be used as a crude approximation in other distributions
(non-uniform) of random points where an exact calculation is not possible
beyond the first neighbour.

Acknowledgement

We thank D. Dhar, S. S. Manna and A. Percus for their comments.

References

[1] S. Chandrasekhar, Rev. Mod. Phys. 15 (1943) 1.

[2] S. Chandrasekhar, An introduction to the theory of stellar structure
(University of Chicago Press, Chicago, 1957).

[3] J. Beardwood, J. H. Halton and J. M. Hammersley, Proc. Camb. Phil.
Soc. 55 (1959) 299.

[4] A. Percus and O. Martin, Phys. Rev. Lett. 76 (1996) 1188.



